Wiskundemeisjes
Martijn stuurde ons een link naar deze bijzondere pi-ketting. Van RGB Laboratory, zo te zien alleen te koop in Japan.

Vorig weekend kreeg ik van de onvolprezen cadeautjesgevers Petra en Sidney deze prachtige pi-deken.

Ik weet niet waar ze hem gekocht hebben, maar misschien willen Petra en Sidney dat wel verklappen aan lezers die ook zo'n mooie (en lekker warme) deken willen!
Deze column verscheen vandaag in de Volkskrant. Op deze blog heb ik trouwens al vaker over kettingbreuken geschreven
“Waarom schrijf je nooit eens een column over je eigen onderzoek?â€, vroeg mijn promotor de week voor de verdediging van mijn proefschrift. De afgelopen jaren stond een groot deel van mijn leven in het teken van kettingbreuken, het onderwerp van mijn promotie-onderzoek. Dat onderzoek viel me soms zwaar, het was traag en eenzaam werk. En als ik dan eindelijk een nieuw resultaat bewezen had, dan kon ik aan bijna niemand uitleggen wat ik had bereikt. Daarom schreef ik hier liever over andere, meer toegankelijke onderwerpen.
Inmiddels heb ik mijn proefschrift met succes verdedigd en de komende jaren zal ik waarschijnlijk geen zwaar theoretisch wiskundig onderzoek meer doen. En nu besef ik ineens wat ik ga missen: samen met enthousiaste collega’s voor een schoolbord een nieuw idee uitwerken, op de fiets naar huis ineens begrijpen hoe het bewijs moet lopen en het gevoel van ultieme triomf als alle details keurig op hun plaats schuiven. Daarom deze week een stukje over die kettingbreuken waar ik jaren aan werkte. Omdat ik ze stiekem nu al een beetje mis.
Ceci n'est pas une kettingbreuk
Allereerst: een kettingbreuk heeft niets te maken met gestrande wielrenners of vastgelopen machines. Het is in feite een ketting van breuken: een breuk in een breuk in een breuk (enzovoorts), zie het plaatje hieronder voor de kettingbreuk van pi. Elk getal kun je schrijven als een kettingbreuk. Voor breuken krijg je een eindige kettingbreuk. Voor getallen die zelf geen breuk zijn, zoals pi, is de bijbehorende kettingbreuk oneindig lang.

Als je zo’n oneindige kettingbreuk afkapt door het onderste stuk vanaf een zeker punt weg te laten, krijg je een gewone breuk. Op die manier kun je oneindige reeks benaderingsbreuken voor je oorspronkelijke getal vinden. Neem bijvoorbeeld de kettingbreuk van pi. Als je alles onder de 7 vergeet, dan krijg je 3 + 1/7, oftewel 22/7, een benadering van pi die vroeger vaak op school werd gebruikt. De volgende benadering krijg je door alles na 15 te vergeten: dit geeft 333/106. En door nog één term verder te gaan, vind je 355/113. Die laatste breuk is ongeveer 3,14159292 en benadert pi tot op maar liefst zes decimalen. Deze benadering is zo goed, dat geen enkele breuk met noemer kleiner dan 16604 dichter bij π ligt. De Chinese wiskundige Chong Zhi berekende deze goede benadering voor pi trouwens al rond 480 na Christus, maar hij deed dat zonder kettingbreuken.
Goede benaderingen zijn breuken met een kleine noemer die heel dicht bij het oorspronkelijke getal liggen. En zulke benaderingen worden precies gevonden met kettingbreuken. Kettingbreuken hebben allerlei toepassingen, maar dat is niet de reden dat ik ze jarenlang bestudeerd heb. Ik werkte aan een generalisatie van de kettingbreuken en probeerde daarmee heel algemene eigenschappen te bewijzen. Ik wilde bijvoorbeeld weten hoeveel benaderingen je achter elkaar moet nemen om zeker te weten dat er een heel goede tussen zit. Als zo’n algemeen bewijs na lang zwoegen lukte, dan vielen een heleboel puzzelstukjes op hun plaats en was ik even het gelukkigste wiskundemeisje op aarde.
Het is alweer een poosje geleden dat we trivialiteiten over pi geplaatst hebben, dus nu mag het weer een keertje: op de website van Alicia Kachmar kun je zien hoe je onderstaande pi zelf kunt haken! Als je handig bent, tenminste, en Engels haakjargon snapt...

Even een luchtig filmpje voor deze korte zondag. Dit meisje balanceert boeken op haar hoofd terwijl ze decimalen van pi opzegt en een Rubiks kubus oplost.
Dit stuk staat vandaag in de Kennisbijlage van De Volkskrant. Helaas werkt de link in dat artikel niet meer, onderaan dit stuk staat de goede link naar meer informatie.
Morgen wordt wereldwijd pi-dag gevierd. Elk jaar verzamelen pi-liefhebbers zich in de derde maand op de veertiende dag (oftewel: 3,14) voor een feestje. Tijd om de grootste misverstanden over deze wiskundige constante recht te zetten.
1. Pi heeft iets te maken met de stelling van Pythagoras.
In de kerstuitzending van Bananasplit kwam pi ter sprake. Danny de Munck gaf onmiddellijk toe dat hij niets wist van wiskunde. Naast hem zat Nance, zij had ook geen wiskundeknobbel, maar “wist nog wel dat pi de stelling van Pythagoras isâ€. Helaas, pi en de stelling van Pythagoras zijn de twee dingen die de meeste mensen onthouden hebben van wiskunde, maar ze hebben niets met elkaar te maken. De stelling van Pythagoras gaat over driehoeken, terwijl pi van cirkels komt. Pi is de omtrek van een cirkel gedeeld door de diameter: ongeveer 3,14. Het maakt niet uit hoe groot of klein de cirkel is, de verhouding tussen omtrek en diameter is altijd precies pi. Daarnaast verschijnt pi ook op allerlei andere plaatsen: bijvoorbeeld in de verdeling van schoenmaten.
2. Pi is precies 3,14.
Pi begint als 3,14159 en daarna volgen nog oneindig veel cijfers. In die cijfers zit geen regelmaat. In de praktijk wordt daarom altijd een benadering van pi gebruikt. In de bijbel laat Solomo voor een tempel een bekken maken: “vijf el hoog, met een middellijn van tien el en een omtrek van dertig elâ€. Volgens deze tekst is pi dus gelijk aan 30/10 = 3, een eenvoudige benadering. Hoe nauwkeuriger de berekening, hoe meer decimalen er nodig zijn. Pi is niet te schrijven als een breuk, maar kan wel goed benaderd worden met breuken. Op school wordt vaak 22/7 (ongeveer 3,14285) gebruikt voor pi.
3. In de Amerikaanse wet staat dat pi gelijk is aan 3.
Het is een vaak voorkomend misverstand dat een bijbelvaste Amerikaanse staat in de wet heeft vastgelegd dat pi drie is. Zoiets is nooit gebeurd of zelfs maar voorgesteld. Wel is in 1897 in Indiana een merkwaardig wetsvoorstel ingediend door een amateurwiskundige. Hij wilde pi anders definiëren om berekeningen makkelijker te maken. In zijn voorstel waren allerlei verschillende waarden voor pi te vinden, variërend van 3,2 tot 4(!). Het voorstel werd in eerste instantie unaniem aangenomen, maar het sneuvelde alsnog in de senaat. Niet omdat de senaatsleden vonden dat er iets mis was met de theorie, maar omdat ze dachten dat pi geen zaak van wetgeving was.
4. In pi zitten geheime boodschappen verstopt.
Het zoeken naar gecodeerde boodschappen in de oneindige reeks decimalen van pi is een populaire hobby. Door de cijfers om te zetten naar letters kun je zinnen als “God bestaat†in de decimalen ontdekken. Het probleem is dat wiskundigen vermoeden dat elk rijtje cijfers uiteindelijk een keer in de decimalen van pi voorkomt, dus dan zou ook de zin “God bestaat niet†vanzelf een keer in de decimalen opduiken, net als de integrale tekst van Hamlet of de Volkskrant van vandaag. Voor wie het moeilijk te geloven vindt dat in één getal alle mogelijke teksten zijn gecodeerd: er is een getal waarvan we dit zeker weten dat alle mogelijke codes er instaan. Dat is de contante van Champernowne: 0,12345678910111213141516... enzovoorts. Niets magisch aan dus.
5. Het is belangrijk om pi zo ver mogelijk uit te rekenen.
Al eeuwenlang is het een sport om zoveel mogelijk decimalen van pi uit te rekenen. Omdat het er oneindig veel zijn, valt het record steeds weer te verbeteren. Zhu Chongzi berekende bijvoorbeeld rond het jaar 500 al dat pi tussen 3,1415926 en 3,1415927 ligt. Op dit moment staat het record op 2,7 biljoen cijfers. Om een indruk te geven hoe belachelijk veel cijfers dit zijn: als je deze 2,7 biljoen cijfers gaat opzeggen (zeg één per seconde), dan duurt dat 85.616 jaar. Voor de meeste berekeningen zijn echter een stuk of tien cijfers na de komma ruim voldoende en niemand heeft meer dan duizend cijfers nodig.
Dat de records toch steeds sneuvelen heeft twee redenen. Allereerst hebben snelle rekenmethodes allerlei andere toepassingen, het uitrekenen van pi is niet meer dan een mooie test. Bovendien raakt het uitrekenen van zoveel mogelijk decimalen voor sommige mensen een obsessie. Zelfs Isaac Newton raakte in de ban van pi en schreef in 1666: “Ik schaam me om te vertellen tot hoeveel cijfers ik deze berekeningen heb uitgevoerd, toen ik niets anders te doen had.â€
Tot en met 28 maart hangen de eerste miljoen decimalen van pi in de Centrale Bibiliotheek Rotterdam als onderdeel van een expositie over de geschiedenis van pi. Morgen wordt tussen 13.00 en 17.00 uur pi-dag gevierd met lezingen, wiskundige puzzels en pi-koekjes. De toegang is vrij. Adres: Bibliotheek Rotterdam, Hoogstraat 110, Rotterdam. Meer informatie op de site van de bibliotheek.
Komende zondag is pi het stralend middenpunt van de Centrale Bibliotheek Rotterdam.
Kom dus ook naar deze feestelijke pi-dag!

Harry Hoek maakte een grote pi-tentoonstelling over de geschiedenis van pi, de eerste miljoen decimalen van pi hangen in hun volle glorie in de hal, het schoolmuseum leende wiskundige leermaterialen uit en Arabesk verkoopt prachtige wiskundige puzzels en kunstobjecten. Je kunt ook de cultfilm Pi kijken.
En voor de wiskundemeisjesfans: Om 13.30 uur en 15.00 uur doe ik leuke pi-experimenten met het publiek. De toegang is gratis en ik hoorde dat er zelfs pi-koekjes komen, dus als je zondag in de buurt bent, kom dan vooral even langs! Meer informatie vind je op de site van de Bibliotheek Rotterdam.
Als je zondag niet kunt, dan kun je de pi-tentoonstelling van 8 tot en met 28 maart bewonderen.
Deze column verscheen vandaag in de Volkskrant.
Als je wil weten hoe de decimalen van het getal pi (de verhouding tussen de omtrek en de diameter van een cirkel, ongeveer gelijk aan 3,14159265…) er uitzien, hoef je tegenwoordig alleen maar je rekenmachine te pakken of je computer aan te zetten. Dat was in de zeventiende eeuw wel anders. Ook toen was men geïnteresseerd in pi.

Ludolph van Ceulen
Het rekenwerk in die tijd lijkt mij geen pretje, maar scherm- en rekenmeester Ludolph van Ceulen (1540 – 1610) dacht daar heel anders over. Hij berekende pi tot maar liefst 35 decimalen. Zijn methode, naar een idee van Archimedes, komt neer op het volgende principe. Een cirkel met diameter 1 heeft een omtrek van lengte pi. Je kunt nooit een cirkel zó precies tekenen en meten dat je op die manier pi redelijk kunt benaderen.
Teken nu in een cirkel met diameter 1 een vierkant dat nog nèt in de cirkel past, en teken om die cirkel heen een vierkant zodat de cirkel precies aan de vier zijden raakt. Dan zit de omtrek van de cirkel tussen de omtrek van het kleine en die van het grote vierkant in. En omtrekken van vierkanten kun je makkelijk uitrekenen.
Bij een cirkel met diameter 1 vind je zo de volgende benadering van pi: 2√2 < pi < 4. Het getal 2√2 is ongeveer 2.82842712, dus dit geeft geen goede benadering. Maar als je in plaats van vierkanten regelmatige veelhoeken met veel meer hoeken in en om de cirkel past, en daar de omtrekken van uitrekent, krijg je steeds betere onder- en bovengrenzen voor pi.

Archimedes gebruikte regelmatige 96-hoeken en vond dat 3.140909654 < pi < 3,142826575. Van Ceulen ging veel verder en gebruikte regelmatige 32.212.254.720-hoeken. Daarmee vond hij 20 decimalen. Hij moet een veelhoek met nog meer hoeken gebruikt hebben voor zijn 35 decimalen, maar we weten niet welke. Een hele prestatie, als je bedenkt dat hij daarvoor talloze wortels moest trekken, met ook extreem veel decimalen om nauwkeurig genoeg verder te kunnen rekenen, en dat met de hand… Met zijn benaderingen kon Van Ceulen en passant een aantal geleerde tijdgenoten die claimden oplossingen van de cirkelkwadratuur gevonden te hebben, op hun nummer zetten. De vraag daarbij is om, gegeven een cirkel van een bepaalde grootte, een vierkant te construeren dat dezelfde oppervlakte heeft. Dat is een onmogelijke opdracht, en de crux zit in het woord “construerenâ€: je mag alleen een passer en een latje (een liniaal zonder schaalverdeling) gebruiken. In 1882 werd definitief bewezen dat het probleem onoplosbaar is, maar in de zeventiende eeuw wist men dat nog niet zeker. Van Ceulen kon met zijn benaderingen van pi wel laten zien dat de geclaimde oplossingen allemaal fout waren!

Hij was erg trots op zijn prestatie, en daarom kwamen de 35 decimalen op zijn grafsteen terecht. Dat was de eerste keer dat al die decimalen gepubliceerd werden. In de Leidse Pieterskerk is een replica te zien. Dit jaar is Van Ceulen vierhonderd jaar dood, dus laten we op pi-dag (14 maart, naar 3,14) maar eens aan zijn gereken denken!
Edit: neem ook eens een kijkje op www.ludolphvanceulen.nl.
Vandaag op Wisebits een filmpje dat Olivier Boeke maakte naar aanleiding van deze column van mij.
Binnenkort komen er nog meer wiskundige filmpjes online!