Wiskundemeisjes

Ionica & Jeanine
 
Slik Internetbureau Rotterdam Internetbureau Rotterdam



  • Laatste Reacties

Categorieën

Archief

16-04-2011

Deze column staat vandaag in de Volkskrant.

In deze maand van de filosofie gaat het zelden over wiskunde. Vroeger waren veel filosofen wiskundigen (en andersom), maar tegenwoordig lijkt er een strikte scheiding te zijn tussen de vakgebieden. Dat is jammer, want wiskunde kan nog steeds helpen om anders en beter tegen dingen aan te kijken.

Het drie-deuren-probleem is een berucht voorbeeld onder wiskundigen. In een spelshow mag een kandidate kiezen uit drie deuren. Achter één deur staat een prachtige auto, achter de twee andere deuren staan mottige geiten. De kandidate wil graag de auto winnen en wijst één van de deuren aan. De presentator, die precies weet waar de auto staat, opent één van de andere twee deuren en laat zien dat daar een geit staat. De presentator vraagt de kandidate hoe zeker zij is van haar keus. Wil ze misschien nog van deur wisselen? Ze mag nu nog de andere gesloten deur kiezen! Heeft het op dit moment zin om te wisselen?


Stel dat deze situatie niet hypothetisch is. Bijvoorbeeld in de Amerikaanse quiz Let's make a deal.

Stel dat deze situatie niet hypothetisch is. Bijvoorbeeld in de Amerikaanse quiz Let's make a deal.


Bijna iedereen denkt hier hetzelfde: “Natuurlijk maakt het niet uit of ze wisselt. Er zijn nu nog twee deuren en elke deur heeft een kans van 1/2 op de auto.” Intuïtief lijkt volkomen duidelijk dat er geen verschil is tussen die twee deuren. De kandidate zal waarschijnlijk bij haar eerste deur blijven, omdat ze daar in eerste instantie een goed gevoel bij had.

En dat is jammer, want de menselijke intuïtie zit er in dit geval behoorlijk naast. Als de kandidate van deur wisselt heeft ze namelijk 2/3 kans om te winnen. Als ze bij haar eerste deur blijft, is de kans om te winnen maar 1/3. Ze verdubbelt dus haar winkans als ze wisselt.

Toen dit probleem voor het eerst in de krant stond, werd de redactie bedolven onder grote stapels brieven. Lezers, waaronder grappig genoeg diverse wiskundigen, beweerden op hoge toon dat er niets van het antwoord klopte. Maar het klopt echt. De kandidate heeft als ze níet wisselt een kans van 1/3 om te winnen. Ze wint dan alleen als ze gelijk aan het begin die ene deur aanwijst waar de auto achter staat. Als ze wel wisselt, dan wint ze juist als ze oorspronkelijk een deur met een geit had aangewezen. En die kans is 2/3.

Wie het niet gelooft moet het thuis maar eens een paar keer naspelen. Het helpt ook om aan een variant met duizend deuren te denken. Als de presentator na de keuze 998 deuren opent (met een hele kudde geiten erachter), is het een stuk duidelijker dat de kandidate maar beter kan wisselen.

Dit voorbeeld laat zien hoe menselijke intuïtie het mis kan hebben. Wel zo handig om te weten voor filosofen. Een hoogleraar vertelde ooit dat hij dit probleem al jaren bij zijn college statistiek behandelde. Wiskundigen, economen, artsen, juristen, ze hadden het allemaal in eerste instantie fout. Aan het eind van zijn college was altijd iedereen overtuigd van het juiste antwoord. Behalve de juristen, die bleven erover in discussie gaan. Wat dat over hen zegt, is dan weer meer iets voor filosofen dan wiskundigen.




Vorige week vrijdag werd Hendrik Lenstra benoemd tot Ridder in de Orde van de Nederlandse Leeuw. Eerder die dag werden er ter ere van Hendriks zestigste verjaardag een aantal voordrachten gegeven.

Richard Groenewegen noemde in zijn voordracht een leuk probleem dat Hendrik bij zijn promotie kreeg van John Conway en Mike Paterson. Het is A headache-causing problem (pdf). Hieronder een voorbeeld uit het artikel.

Drie mannen zitten in een kamer met elk een niet-negatief geheel getal op hun voorhoofd. Zeg bijvoorbeeld dat Arthur, Bertram en Engelbert elk een 2 op hun voorhoofd hebben. Iedere man kan alleen de twee getallen van de anderen zien en niet dat van zichzelf. Op een schoolbord dat ze alledrie kunnen zien schrijft een blinde vrouw de getallen 6, 7 en 8 en vertelt de mannen dat één van deze getallen de som is van de drie getallen op hun voorhoofden. Vervolgens vraagt ze aan Arthur of hij nu weet welk getal hij op zijn voorhoofd heeft. Als hij het niet weet, stelt ze dezelfde vraag aan Bertram. Als hij het ook niet weet, dan gaat ze naar Engelbert. Als hij niet kan zeggen welk getal er op zijn voorhoofd staat, dan begint ze een nieuwe ronde vragen bij Albert. Het spel stopt zodra er iemand `Ja' zegt.



De (algemene) stelling van Paterson en Conway is dat als het aantal getallen op het bord kleiner dan of gelijk aan het aantal mannen is, het spel na een eindig aantal vragen stopt. In het grappige artikel bewijzen ze eerst dat deze stelling onjuist is (de tegenargumenten lijken sterk op die bij de puzzel met de blauwe en bruine ogen.). Daarna geven ze een bewijs dat de stelling juist is. Daarna buiten ze nog uit dat ze nu alles kunnen bewijzen! Bekijk zelf vooral de scan van het artikel die we via de blog van Tanya Khovanova vonden (een erg leuke blog trouwens!).