
by using increments and limits instead of differentials, but the present form helps to
demonstrate the utility of the differential calculus in addressing such problems. This
alternate approach will hopefully provide a better link between thought processes in
both calculus and physics.
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◦

A Magic Trick from Fibonacci
James Smoak (jsmoak@worldnet.att.net), 12140 E. Iowa Drive, Aurora, CO 80012
Thomas J. Osler (Osler@rowan.edu), Mathematics Department, Rowan University,
Glassboro, NJ 08028

A mathematical magician displays the following remarkable fractions and asks us
to think “Fibonacci.”

100

89
= 1. 1 2 3 5 955056 · · ·

10000

9899
= 1. 01 02 03 05 08 13 21 34 55 9046368 · · ·

1000000

998999
= 1. 001 002 003 005 008 013 021 034 055 089

144 233 377 610 98859958818777596 · · ·
The decimal expansion of our first fraction generates the first five Fibonacci numbers
before blurring into other digits. Our second fraction generates the first ten, and the
third fraction generates the first fifteen. Notice that the successive fractions change by
appending two 0s to the numerator and a 9 to the front and back of the denominator.
Will the next fraction 100000000

99989999 generate the first twenty Fibonacci numbers in a similar
way? Does this pattern continue forever? What is behind this magic trick?

A check of several additional fractions with a computing aide like Mathematica
shows that the pattern does appear to continue. (Roberts [2] mentions the fraction
10000/9899.)

We now reveal the machinery of the magician. We use the familiar notation F1 = 1,

F2 = 1, F3 = 2, . . . for the Fibonacci numbers, with the recurrence relation Fn =
Fn−1 + Fn−2. The generating function [1] for these numbers is the key item

1

1 − x − x2
= F1 + F2x + F3x2 + F4x3 + · · · . (1)

Note that

(F1 + F2x + F3x2 + · · ·)(1 − x − x2) = F1 + x(F2 − F1)

+
∞∑

n=2

xn(Fn+1 − Fn − Fn−1) = 1

since F1 = 1, F2 − F1 = 0, and Fn+1 − Fn − Fn−1 = 0, for all n ≥ 2.
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Now letting x = 0.1, we get

1

1 − 0.1 − 0.01
= 100

89
= 1 + 1(.1) + 2(.01) + 3(.001) + 5(.0001) + 8(.00001)

+ 13(.000001) + · · · .
This explains how the first fraction displays the first five Fibonacci numbers. The sixth
Fibonacci number, 8, becomes 9 in the decimal expansion because of carry from the
number 13.

In the same way, let x = 0.01 in (1) and get

1

1 − 0.01 − 0.0001
= 10000

9899

= 1 + 1(.01) + 2(.0001) + 3(.000001) + 5(.00000001) + · · · .
This explains how the second fraction displays the first ten Fibonacci numbers using
two digits per number.

Letting x = 0.001 in (1) generates our third number 1000000
998999 in a similar way.

In general, we are generating fractions of the form 102m

102m−10m−1
, with m = 1, 2, 3, . . . .

In its decimal expansion, we display each consecutive Fibonacci number Fn using a
block of m digits. This will work well until the next Fibonacci number has m + 1
digits, causing carry and destruction of the pattern.

Another explanation uses only long division. Study the following calculation of
102m F1

102m−10m−1
:

F1 + 10−m F2 + 10−2m F3 + 10−3m F4 + · · ·
102m − 10m − 1 102m F1

102m F1 − 10m F1 − F1

10m F2 + F1

10m F2 − F2 − 10−m F2

F3 + 10−m F2

F3 − 10−m F3 − 10−2m F3

10−m F4 + 10−2m F3

10−m F4 − 10−2m F4 − 10−3m F4

10−2m F5 + 10−3m F4

Since only m spaces are allowed for the digits, the pattern terminates with the first Fk

that has m + 1 digits.
Usually there is a run of five consecutive Fibonacci numbers with the same num-

ber of digits, but a computer search shows that about 5% of the time, there are
only four Fibonacci numbers in the run. Why is this so? A rough calculation can
be made using Binet’s formula [1], Fn = φn−(−φ)−n√

5
, with φ = 1+√

5
2 = 1.61803 . . . .

This enables us to calculate Fn directly. Since (−φ)−n is small, we can calculate
the Fibonacci numbers exactly by simply rounding off the expression Fn ≈ φn√

5
.

How many digits does Fn have? Let d(n) denote the number of decimal digits
in Fn . Suppose we write Fn = dN dN−1 · · · d2d1, where each dk is a decimal digit.
Now Fn = 10N−1dN . dN−1 · · · d1 and log10 Fn = N − 1 + log10 dN . dN−1 · · · d1 =
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N − 1 + y, where 0 ≤ y < 1. Thus, d(n) = N = 1 + log10 Fn − y = 
1 + log10 Fn�,
where 
z� denotes the greatest integer less than or equal to z. Using the approx-
imation Fn ≈ φn√

5
we get d(n) = 
1 + log10(

φn√
5
)� ≈ 
1 + n log10 φ − log10

√
5� ≈


0.209n + 0.651�. Notice that d(n + k) − d(n) ≈ 
0.209n + 0.651 + 0.209k� −

0.209n + 0.651�. Notice that for k = 1, 2, 3 or 4, d(n + k) − d(n) = 0 or 1. But
d(n + 5) − d(n) = 1 or 2. When d(n + 5) − d(n) = 1, we get a run of five Fibon-
nacci numbers with the same number of digits. However, when d(n + 5) − d(n) = 2,
we get only four. Using a computer, we found that d(n + 5) − d(n) = 2 at n =
16, 35, 59, 83, 102, 126, 150, 169, 193, . . . . For example, F16 to F21 are 987, 1597,
2584, 4181, 6765, 10946, which shows a run of only four Fibonacci numbers with
four digits.

Acknowledgment. The authors wish to thank George Andrews for his support and encour-
agement.
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◦

Lagrange Multipliers Can Fail To Determine Extrema
Jeffrey Nunemacher (jlnunema@cc.owu.edu), Ohio Wesleyan University, Delaware,
OH 43015

The method of Lagrange multipliers is the usual approach taught in multivariable
calculus courses for locating the extrema of a function of several variables subject to
one or more constraints. It must, however, be applied with care because the method
can miss the sought extremal values. This capsule discusses some simple examples in
which Lagrange multipliers fails to locate extrema.

Recall that the method of Lagrange multipliers proceeds as follows in the simplest
two dimensional setting. To find the extrema of a function f (x, y) subject to the con-
straint g(x, y) = k when all functions are C1 smooth, we compute the gradient vectors
∇ f (x, y) and ∇g(x, y) and solve the simultaneous system in three variables x , y,
and λ

∇ f (x, y) = λ∇g(x, y) and g(x, y) = k. (1)

Then if the geometry is right, a constrained extremum must occur at a point (x0, y0)

among the solutions to (1). Since this set is often finite, the location of the extrema can
be determined by surveying all possibilities. But to be assured that the method suc-
ceeds, we must know that the geometry is right—that is, the set defined by g(x, y) = k
is a smooth curve in the plane. Here the Implicit Function Theorem is useful; it guar-
antees that a level set g(x, y) = k is a smooth curve with nonvanishing tangent vector
in a neighborhood of a point (a, b) if ∇g(a, b) �= 0. Thus, when seeking constrained
extrema, we should also examine all critical points of g(x, y).
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