
The Two Cultures of Mathematics.

W. T. Gowers

In his famous Rede lecture of 1959, entitled “The Two Cultures”, C. P. Snow argued

that the lack of communication between the humanities and the sciences was very harmful,

and he particularly criticized those working in the humanities for their lack of understand-

ing of science. One of the most memorable passages draws attention to a lack of symmetry

which still exists, in a milder form, forty years later:

A good many times I have been present at gatherings of people who, by the standards

of the traditional culture, are thought highly educated and who have with considerable

gusto been expressing their incredulity at the illiteracy of scientists. Once or twice I

have been provoked and have asked the company how many of them could describe

the Second Law of Thermodynamics. The response was cold: it was also negative.

Yet I was asking something which is about the scientific equivalent of: Have you read

a work of Shakespeare’s?

I would like to argue that a similar sociological phenomenon can be observed within pure

mathematics, and that this is not an entirely healthy state of affairs.

The “two cultures” I wish to discuss will be familiar to all professional mathematicians.

Loosely speaking, I mean the distinction between mathematicians who regard their central

aim as being to solve problems, and those who are more concerned with building and

understanding theories. This difference of attitude has been remarked on by many people,

and I do not claim any credit for noticing it. As with most categorizations, it involves

a certain oversimplification, but not so much as to make it useless. If you are unsure to

which class you belong, then consider the following two statements.

(i) The point of solving problems is to understand mathematics better.

(ii) The point of understanding mathematics is to become better able to solve prob-

lems.

Most mathematicians would say that there is truth in both (i) and (ii). Not all problems

are equally interesting, and one way of distinguishing the more interesting ones is to

demonstrate that they improve our understanding of mathematics as a whole. Equally,

if somebody spends many years struggling to understand a difficult area of mathematics,
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but does not actually do anything with this understanding, then why should anybody else

care? However, many, and perhaps most, mathematicians will not agree equally strongly

with the two statements. Certainly, Sir Michael Atiyah would not, as he showed in an

interview in 1984 [A1].

MINIO: How do you select a problem to study?

ATIYAH: I think that presupposes an answer. I don’t think that’s the way I work

at all. Some people may sit back and say, “I want to solve this problem” and they

sit down and say, “How do I solve this problem?” I don’t. I just move around in

the mathematical waters, thinking about things, being curious, interested, talking to

people, stirring up ideas; things emerge and I follow them up. Or I see something

which connects up with something else I know about, and I try to put them together

and things develop. I have practically never started off with any idea of what I’m

going to be doing or where it’s going to go. I’m interested in mathematics; I talk, I

learn, I discuss and then interesting questions simply emerge. I have never started off

with a particular goal, except the goal of understanding mathematics.

This interview first appeared in the Mathematical Intelligencer, but was reprinted in the

general section of Atiyah’s collected works. I strongly recommend his general essays and

lectures on mathematics to anybody who wishes to sort out their own ideas about the

significance of mathematics, and shall refer to them several times in this article.

Another person who would not have attached equal weight to the two statements was

Paul Erdős, who bequeathed to the world an enormous number of fascinating problems,

as well as solutions to many others, but is not associated to the same extent with the

development of theory. This is not to deny that Erdős was trying to understand math-

ematics: many people who have solved an Erdős problem (alas, I am not one of them)

will testify that, as they have thought harder and harder about it, they have been led in

unexpectedly fruitful directions and come to realize that the problem was more than the

amusing curiosity that it might at first have seemed. So when I say that mathematicians

can be classified into theory-builders and problem-solvers, I am talking about their priori-

ties, rather than making the ridiculous claim that they are exclusively devoted to only one

sort of mathematical activity.

It is obvious that mathematics needs both sorts of mathematicians (as Atiyah himself

says at the end of [A2]). It is equally obvious that different branches of mathematics require
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different aptitudes. In some, such as algebraic number theory, or the cluster of subjects

now known simply as Geometry, it seems (to an outsider at least - I have no authority for

what I am saying) to be important for many reasons to build up a considerable expertise

and knowledge of the work of other mathematicians are doing, as progress is often the

result of clever combinations of a wide range of existing results. Moreover, if one selects

a problem, works on it in isolation for a few years and finally solves it, there is a danger,

unless the problem is very famous, that it will no longer be regarded as all that significant.

At the other end of the spectrum is, for example, graph theory, where the basic object,

a graph, can be immediately comprehended. One will not get anywhere in graph theory

by sitting in an armchair and trying to understand graphs better. Neither is it particularly

necessary to read much of the literature before tackling a problem: it is of course helpful

to be aware of some of the most important techniques, but the interesting problems tend

to be open precisely because the established techniques cannot easily be applied.

Let me now briefly mention an asymmetry similar to the one pointed out so forcefully

by C. P. Snow. It is that the subjects that appeal to theory-builders are, at the moment,

much more fashionable than the ones that appeal to problem-solvers. Moreover, math-

ematicians in the theory-building areas often regard what they are doing as the central

core (Atiyah uses this exact phrase) of mathematics, with subjects such as combinatorics

thought of as peripheral and not particularly relevant to the main aims of mathematics.

One can almost imagine a gathering of highly educated mathematicians expressing their in-

credulity at the ignorance of combinatorialists, most of whom could say nothing intelligent

about quantum groups, mirror symmetry, Calabi-Yau manifolds, the Yang-Mills equation,

solitons or even cohomology. If a combinatorialist were to interrupt such a gathering and

ask roughly how many subsets of {1, 2, . . . , n} can be found such that the symmetric dif-

ference of any two of them has size at least n/3, the response might very well be a little

frosty. (This problem is very easy if and only if one knows the appropriate technique,

which is to choose sets randomly and show that the chances of any given pair of them

having a symmetric difference of size less than n/3 are exponentially small. So the answer

is ecn for some constant c > 0.)

My main purpose here is to defend some of the less fashionable subjects against

criticisms commonly made of them. I shall devote most of my attention to combinatorics,

since this is the area I know best. However, what I say applies to other areas as well. I
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often use the word “combinatorics” not quite in its conventional sense, but as a general

term to refer to problems that it is reasonable to attack more or less from first principles.

(This is really a matter of degree rather than an absolute distinction.) Such problems

need not be discrete in character or have much to do with counting. Nevertheless, there

is a considerable overlap between this sort of mathematics and combinatorics as it is

conventionally understood.

Why should problem-solving subjects be less highly regarded than theoretical ones?

To answer this question we must consider a more fundamental one: what makes one piece

of mathematics more interesting than another? Once again, Atiyah writes very clearly

and sensibly on this matter (while acknowledging his debt to earlier great mathematicians

such as Poincaré and Weyl). He makes the point (see for example [A2]) that so much

mathematics is produced that it is not possible for all of it to be remembered. The processes

of abstraction and generalization are therefore very important as a means of making sense

of the huge mass of raw data (that is, proofs of individual theorems) and enabling at least

some of it to be passed on. The results that will last are the ones that can be organized

coherently and explained economically to future generations of mathematicians. Of course,

some results will be remembered because they solve very famous problems, but even these,

if they do not fit into an organizing framework, are unlikely to be studied in detail by more

than a handful of mathematicians.

Thus, it is useful to think not so much about the intrinsic interest of a mathematical

result as about how effectively that result can be communicated to other mathematicians,

both present and future. Combinatorics appears to many to consist of a large number

of isolated problems and results, and therefore to be at a disadvantage in this respect.

Each result individually may well require enormous ingenuity, but ingenious people exist,

especially in Hungary, and future generations of combinatorialists will not have the time

or inclination to read and admire more than a tiny fraction of their output.

Let me attempt to answer this criticism. It is certainly rare in combinatorics for

somebody to find a very general statement which suddenly places a large number of ex-

isting results in their proper context. It is also true that many of the results proved by

combinatorialists are somewhat isolated and will be completely forgotten (but this does

not distinguish combinatorics from any other branch of mathematics). However, it is not

true that there is no structure at all to the subject. The reason it appears to many mathe-
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maticians as though combinatorics is just a miscellaneous collection of individual problems

and results is that the organizing principles are less explicit.

If the processes of abstraction and generalization, which are so important in mathe-

matics, are of only limited use in combinatorics, then how can the subject be transmitted

to future generations? One way of thinking about this question is to ask what the re-

quirements of tomorrow’s combinatorialists are likely to be. As I have said already, their

priority is likely to be solving problems, so their interest in one of today’s results will

be closely related to whether, by understanding it, they will improve their own problem-

solving ability. And this brings us straight to the heart of the matter. The important ideas

of combinatorics do not usually appear in the form of precisely stated theorems, but more

often as general principles of wide applicability.

An example will help to make this point more clearly. One form of Ramsey’s theorem

is the following statement.

Theorem. For every positive integer k there is a positive integer N , such that if the edges

of the complete graph on N vertices are all coloured either red or blue, then there must

be k vertices such that all edges joining them have the same colour.

The least integer N that works is known as R(k).

The following argument shows that R(k) ≤ 22k. Let G be a graph with 22k vertices,

and let us suppose for convenience that the vertices are totally ordered. Let x1 be the first

vertex. Then by the pigeonhole principle there is a set of vertices A1 of size at least 22k−1

such that every edge from x1 to A1 has the same colour. Now let x2 be the least vertex

of A1. By the pigeonhole principle again there is a set A2 ⊂ A1 of size at least 22k−2 such

that every edge from x2 to A2 has the same colour. Continuing this process, we obtain a

sequence x1, . . . , x2k of vertices and a sequence A1 ⊃ . . . ⊃ A2k of sets such that xi ∈ Ai−1

for every i, and every edge from xi to Ai has the same colour. It follows that the colour

of the edge joining xi to xj depends only on min{i, j}. By the pigeonhole principle again,

we can therefore find a subset H of {x1, . . . , x2k} of size at least k such that this colour is

always the same, so that all edges joining vertices in H have the same colour.

A slight variant of the above argument improves the bound to
(

2k
k

)
. However, I am

more interested here in lower bounds for R(k). One of Erdős’s most famous results is that

R(k) ≥ 2k/2, and it is proved as follows. Instead of trying to construct a clever colouring,
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one simply colours the edges randomly in the most obvious way. That is, each edge is red

with probablity 1/2, and blue with probability 1/2, and all the choices are independent.

Let the number of vertices be N , and let {x1, . . . , xk} be a set of k of them. The probability

that every xi is joined to every xj with a red edge is 2−(k2), and so is the probability that

they are all joined by blue edges. Therefore, the expected number of sets of k vertices all

joined by edges of the same colour is 21−(k2)
(
N
k

)
. If this is less than one, then it must be

possible for there to be no such sets of k vertices. A small calculation shows that it is less

than one when N = 2k/2.

This result of Erdős [E] is famous not because it has large numbers of applications,

nor because it is difficult, nor because it solved a long-standing open problem. Its fame

rests on the fact that it opened the floodgates to probabilistic arguments in combinatorics.

If you understand Erdős’s simple argument (or one of many other similar arguments) then,

lodged in your mind will be a general principle along the following lines:

if one is trying to maximize the size of some structure under certain constraints, and

if the constraints seem to force the extremal examples to be spread about in a uniform

sort of way, then choosing an example randomly is likely to give a good answer.

Once you become aware of this principle, your mathematical power immediately increases.

Problems such as the one I mentioned earlier of finding a large number of sets with large

symmetric differences between any two of them suddenly switch from being impossible to

being almost trivial.

Of course, there is much more to probabilistic combinatorics than keeping an eye

out for simple applications of the above principle. For example, one often decides to use

probabilistic methods and then finds that estimating the relevant probabilities is not easy.

However, a great deal of work has now been done in this area, and many clever techniques

invented. Some of these can again be encapsulated in the form of useful principles. One

of them is the following, known to its friends as Concentration of Measure:

if a function f depends in a reasonably continuous way on a large number of small

variables, then f(x) is almost always close to its expected value.

The full significance of measure concentration was first realized by Vitali Milman in his

revolutionary proof [M] of the following theorem of Dvoretzky [D].

Theorem. For every positive integer k and every ε > 0 there is an n such that every

n-dimensional normed space X has a k-dimensional subspace with Banach-Mazur distance
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at most 1 + ε from `k2 .

This is equivalent to saying that we can find vectors x1, . . . , xk ∈ X such that

( k∑
i=1

|ai|2
)1/2

≤
∥∥∥ k∑
i=1

aixi

∥∥∥ ≤ (1 + ε)
( k∑
i=1

|ai|2
)1/2

for every sequence a1, . . . , ak of scalars. A more geometrical (and even more counterintu-

itive) way to reformulate the theorem is to say that every n-dimensional symmetric convex

body has a k-dimensional central cross-section which contains a k-dimensional ellipsoid B

and is contained in (1 + ε)B, and is therefore almost ellipsoidal itself.

Milman’s approach to the theorem was to choose a k-dimensional subspace of X

randomly. Before doing this, one must choose a sensible probability measure, which can

be done using a theorem of Fritz John. This states that there is a basis x1, . . . , xn of X

which is not hopelessly far from orthonormal, in the sense that

( n∑
i=1

|ai|2
)1/2

≤
∥∥∥ n∑
i=1

aixi

∥∥∥ ≤ √n( n∑
i=1

|ai|2
)1/2

for every sequence a1, . . . , ak of scalars. One then takes the natural measure on the Grass-

mannian Gn,k, with respect to this basis. (Actually, this is an oversimplification, but the

precise details need not concern us here.)

In the case of the two results I mentioned earlier, it was easy to see, with hindsight,

that random methods were sensible. By contrast, in this example there seems to be no

reason to expect them to work. After all, one might think that a typical cross-section of

an irregular convex body would itself be irregular. However, once one is familiar with the

idea of concentration of measure, one notices that the norm of a vector
∑n
i=1 aixi depends

on several variables ai. Moreover, since we are interested only in the ratio of this norm to

the `2-norm
(∑n

i=1 |ai|2
)1/2

, we can assume that none of the ai vary by all that much.

Therefore, by concentration of measure, we might expect the ratio of the X-norm to the

`2-norm to be very close to its expected value nearly all the time. And now the idea of

almost ellipsoidal cross-sections has ceased to be counterintuitive.

The main result needed to make the above argument precise is the following conse-

quence of Lévy’s isoperimetric inequality on the sphere. Let f : Sn → R be a function

with median M . Let A ⊂ Sn be the set of all points x such that f(x) ≤ M . Then
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the probability that a random point in Sn has distance more than ε from A is at most√
π/2 exp(−ε2n/2). Replacing f by −f shows also that almost every y is close to a point

x with f(x) ≥M . Now let f(a1, . . . , an) =
∥∥∥∑n

i=1 aixi

∥∥∥. Since f is reasonably continuous,

and since most points y are close to a points x ∈ A, it follows that f(y) is not much larger

than M . Similarly, for most y, f(y) is not much smaller than M .

Dvoretzky’s theorem, especially as proved by Milman, is a milestone in the local (that

is, finite-dimensional) theory of Banach spaces. While I feel sorry for a mathematician

who cannot see its intrinsic appeal, this appeal on its own does not explain the enormous

influence that the proof has had, well beyond Banach space theory, as a result of planting

the idea of measure concentration in the minds of many mathematicians. Huge numbers of

papers have now been published exploiting this idea or giving new techniques for showing

that it holds.

I could mention many more general principles such as these. Here are just a few.

They are not of equal importance, and, as I have said, they are not precise, but they have

all been exploited a great deal.

(i) Obviously if events E1, . . . , En are independent and have non-zero probability, then

with non-zero probability they all happen at once. In fact, this can be usefully true

even if there is a very limited dependence. [EL,J]

(ii) All graphs are basically made out of a few random-like pieces, and we know how

those behave. [Sze]

(iii) If one is counting solutions, inside a given set, to a linear equation, then it

is enough, and usually easier, to estimate Fourier coefficients of the characteristic

function of the set.

(iv) Many of the properties associated with random graphs are equivalent, and can

therefore be taken as sensible definitions of pseudo-random graphs. [CGW,T]

(v) Sometimes, the set of all eventually zero sequences of zeros and ones is a good

model for separable Banach spaces, or at least allows one to generate interesting

hypotheses.

My main point about such principles is not so much that they are useful, which is not

particularly surprising, but that they play the organizing role in combinatorics that deep

theorems of great generality play in more theoretical subjects. When one is trying to

understand a result, it saves a lot of time if one can reduce it to two or three main ideas.
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Having done this, one may feel no need to follow the details closely. Being familiar with

general principles and a few examples of their application, one knows that one could work

out the details oneself if necessary. For example, I memorize Erdős’s proof of the lower

bound for R(k) as follows: choose the colouring randomly and do the obvious calculations.

Another example is the following remarkable theorem of Kashin [K].

Theorem. For every positive integer n there is an orthogonal decomposition of R2n (with

respect to the usual inner product) into two n-dimensional subspaces X and Y such that

for every x ∈ X ∪ Y the ratio of the `1-norm of x to the `2-norm of x lies between c
√

2n

and
√

2n, for some absolute constant c > 0.

A proof by Szarek [Sza] of this theorem goes like this (if you know the right vague ideas):

a simple volume argument shows that almost none of the unit ball of `n1 is contained in

the corners (a rough word meaning parts where the ratio of the `1-norm to the `2-norm is

small), so it is easy to show that a random decomposition works.

A third example is the following theorem of Roth [R].

Theorem. For every δ > 0 there exists N such that every subset of {1, 2, . . . , N} of size

at least δN (that is, density at least δ) contains an arithmetic progression of length three.

The condensed proof of this is as follows. Look at a subset A ⊂ Z/NZ instead and

consider the Fourier coefficients of the characteristic function of A. If these are small (apart

from Â(0)) then A is essentially random, so it contains plenty of progressions of length

three. Otherwise, there is a large coefficient which allows us to pass to a subprogression of

{1, 2, . . . , N} where A has larger density.

Let me summarize what I have said so far. I have been trying to counter the suggestion

that the subject of combinatorics has very little structure and consists of nothing but a large

number of problems. While the structure is less obvious than it is in many other subjects,

it is there in the form of somewhat vague general statements that allow proofs to be

condensed in the mind, and therefore more easily memorized and more easily transmitted

to others.

There are, however, many other criticisms of combinatorics. One I have heard is that

the subject lacks direction, or goals of a general kind. Another is that the subject is not

particularly deep. A third is that it does not have interesting connections to other parts of
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mathematics (meaning the “central core” of mathematics). A fourth is that many of the

results do not have applications.

These criticisms can be answered in a similar way. Consider first the notion that there

are not general goals in combinatorics. I quote again from the interview with Atiyah [A1]:

I was thinking more of the tendency today for people to develop whole areas of math-

ematics on their own, in a rather abstract fashion. They just go on beavering away.

If you ask what is it all for, what is its significance, what does it connect with, you

find that they don’t know.

Atiyah was not particularly referring to combinatorics, but he makes a powerful point, and

it is as important for combinatorialists as it is for anyone else to show that they are doing

more than merely beavering away.

Some branches of mathematics are dominated by a small number of problems of uni-

versally acknowledged importance. One can justify many results by saying that, in however

small a way, they shed light on the Riemann hypothesis, the Birch-Swinnerton-Dyer con-

jecture, Thurston’s geometrization conjecture, the Novikov conjecture or something of the

kind. Other branches of mathematics derive their appeal from an abundance of mysteri-

ous phenomena that demand explanation. These might be striking numerical coincidences

suggesting a deep relationship between areas that appear on the surface to have nothing to

do with each other, arguments which prove interesting results by brute force and therefore

do not satisfactorily explain them, proofs that apparently depend on a series of happy

accidents or heuristic arguments that work well but are hard to make rigorous.

It would be difficult to demonstrate that combinatorics had many general goals of

the sort just mentioned (with the one very definite exception of the P=NP problem).

However, just as the true significance of a result in combinatorics is very often not the

result itself, but something less explicit that one learns from the proof, so the general

goals of combinatorics are not always explicitly stated. To illustrate this, let me return

to Ramsey’s theorem and the bounds for the function R(k). Despite the simplicity of the

arguments I gave earlier, they give almost the best known estimates. To be precise, the

following problem is open.

Problem. (i) Does there exist a constant a >
√

2 such that R(k) ≥ ak for all sufficiently

large k. (ii) Does there exist a constant b < 4 such that R(k) ≤ bk for all sufficiently

large k?
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I consider this to be one of the major problems in combinatorics and have devoted many

months of my life unsuccessfully trying to solve it. And yet I feel almost embarrassed to

write this, conscious as I am that many mathematicians would regard the question as more

of a puzzle than a serious mathematical problem.

The reason I think so highly of this problem is that it has become clear to me (as

it has to many others who have tried it) that it is very unlikely to be solved by a clever

ad hoc argument, tailored to this problem only. (Actually, I am referring mainly to the

part of the problem concerning the upper bound for R(k).) To be a little vague about it,

the proof that R(k) ≤ 4k has a local character, in the sense that one throws away most

of the graph and concentrates on small neighbourhoods of a few vertices. A better bound

seems to demand a more global argument, involving the whole graph, and there is simply

no adequate model for such an argument in graph theory. Therefore, a solution to this

problem is almost bound to introduce a major new technique.

One of the frustrations of the problem is that, while random colourings do not give a

lower bound significantly better than 2k/2, it looks as though no departure from random-

ness (such as partitioning the vertices into five classes and making the probability of an

edge being red vary according to whether it lies inside a class or joins two classes) improves

the lower bound. However, if one tries to pursue this line of thought, one gets bogged down

with separate analyses of all sorts of different graphs. None of them is individually threat-

ening, but they are hard to pursue systematically. This has led me to fantasize that there

might be a sort of classification of red-blue colourings (or, equivalently, graphs) which

would enable one to solve the problem by checking for each class that the bound had to

be less than (3.99)k, say.

The idea of classifying graphs sounds odd at first, so let me state a result which has

been applied over and over again. First, we need to define a notion of a pseudorandomness.

Let G be a graph and let A and B be disjoint sets of vertices in G. The pair (A,B) is

said to be ε-uniform if there exists a real number α > 0 such that, whenever A′ ⊂ A and

B′ ⊂ B are sets of cardinality at least ε|A| and ε|B| respectively, the number of edges

joining A′ to B′ differs from α|A′||B′| by at most ε|A′||B′|. If ε is small, this says that

the bipartite graph consisting of the edges of G between A and B is rather like a random

graph with edge-probability α. The next result is due to Szemerédi [Sze], and is known as

his uniformity lemma, or regularity lemma.
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Theorem. Let G be a graph, let ε > 0 and let k be a positive integer. Then there exists a

constant K, depending on k and ε only, such that the vertices of G can be partitioned into

m sets A1, . . . , Am, with k ≤ m ≤ K, such that at least (1 − ε)
(
m
2

)
of the pairs (Ai, Aj)

(with i < j) are ε-uniform.

This, as the alert reader will have noticed, is a precise formulation of the general principle

(ii) mentioned earlier (but I stress that not all such principles can be made precise).

Unfortunately, although Szemerédi’s uniformity lemma is an ideal tool for many prob-

lems, there are many others, such as finding better bounds for Ramsey’s theorem, about

which it tells us nothing. Therefore, one general goal of graph theory is to find more de-

tailed and more refined classifications. Another, somewhat opposed to it, is to find ways

of doing without Szemerédi’s uniformity lemma. Significant progress in either of these

projects would have a correspondingly significant impact on graph theory. (This is al-

most a tautology, since a good measure of the progress is whether it allows one to solve

interesting problems.)

In general, as one gains experience at solving problems in an area such as combina-

torics, one finds that certain difficulties recur. It may not be possible to express these

difficulties in the form of a precisely stated conjecture, so instead one often focuses on a

particular problem which involves those difficulties. The problem then takes on an impor-

tance which goes beyond merely finding out whether the answer to it is yes or no. This

explains why it was possible for so many of Erdős’s problems to have hidden depths.

What of the criticism that combinatorics is a shallow subject? One of the great sat-

isfactions of mathematics is that, by standing on giants’ shoulders, as the saying goes, we

can reach heights undreamt of by earlier generations. However, most papers in combina-

torics are self-contained, or demand at most a small amount of background knowledge on

the part of the reader. Contrast that with a theorem in algebraic number theory, which

might take years to understand if one begins with the knowledge of a typical undergraduate

syllabus.

This criticism reflects the different priorities of theory-builders and problem-solvers.

A theory-builder will tend to say that Theorem A is deep because it uses Theorem B which

uses Theorem C etc., all of which were, individually, significant results. A problem-solver

may well not have a long chain of logical dependences of this kind. However, if we consider

a more appropriate kind of dependence, based on general principles again, then the picture
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changes. It will often be the case that, while there is no formal dependence between two

results, there would have been no hope of proving one of them if one was unaware of the

general principles introduced in the proof of the other. Chains of this kind of dependence

can be quite long, so combinatorialists too can have the satisfaction of solving problems

that would have been well out of reach a generation ago. In this way, one feels that the

subject as a whole is progressing.

Now all my arguments so far have been internal to combinatorics. I have tried to show

that the subject has a coherence and sense of direction that are not obvious to an outsider

but are nonetheless important. However, I have said nothing about how mathematics as a

whole can benefit from progress in combinatorics. Let us once again consider what Atiyah

has to say about matters of this sort [A3, §6].

... the ultimate justification for doing mathematics is intimately related with its overall

unity. If we grant that, on purely utilitarian grounds, mathematics justifies itself by

some of its applications, then the whole of mathematics acquires a rationale provided

it remains a connected whole. Any part that drifts away from the main body of the

field has then to justify itself in a more direct fashion.

How does combinatorics fare if we accept the need for a justification of this kind? An

obvious remark is that one can in fact justify combinatorics in a direct fashion, because of

its intimate connection with computer science, the utility of which is obvious. (Strangely,

when the programme committee of the 1998 International Congress of Mathematicians

listed the connections between the various sections, they did not recognise this one.) As

for connections with other subjects, there are applications of combinatorics to probability,

set theory, cryptography, communication theory, the geometry of Banach spaces, harmonic

analysis, number theory ... the list goes on and on. However, I am aware as I write this that

many of these applications would fail to impress a differential geometer, for example, who

might regard all of them as belonging somehow to that rather foreign part of mathematics

that can be safely disregarded. Even the applications to number theory are to the “wrong

sort” of number theory.

It is perhaps helpful to consider various different ways that one branch of mathematics

can be of benefit to another. Here is a list, in order of directness (but not exhaustive), of

how area A can help area B.

(i) A theorem of A has an immediate and useful consequence in B.
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(ii) A theorem of A has a consequence in B, but it takes some work to prove it.

(iii) A theorem of A resembles a question in B sufficiently closely to enable one to

imitate or adapt the A-proof and answer the B-question.

(iv) In order to solve a problem in A, one is led to develop tools in B which are of

independent interest.

(v) Area B contains definitions which resemble those of area A. (To give just one

example, sometimes one wishes to define a notion of independence which behaves in

some but not all ways like linear independence in vector spaces.) Area A then suggests

fruitful ways of organizing and tackling the results and problems in B.

(vi) If one gains an expertise in area A, then one picks up certain habits of thought

which enable one to make a significant contribution to area B.

(vii) Area A is sufficiently close in spirit to area B, that anybody who is good at area

A is likely to be good at area B. Moreover, many mathematicians make contributions

to both areas.

The less direct relationships such as (iv) to (vii) are correspondingly less visible. Never-

theless, their contribution to the interconnectedness of mathematics should not be under-

estimated. I feel this particularly acutely after working for several years in the geometry

of Banach spaces. My initial reason for working in the area was simply that I found re-

sults such as Dvoretzky’s theorem, and several very natural open problems, fascinating.

Later I learnt that my chosen branch of mathematics was strongly criticized for having

broken free from its classical roots in differential equations and thereby lost its purpose. I

would concede that there are not many connections of type (i) and (ii) from pure Banach

space theory to other areas, although there are some deep ideas which many feel are un-

derexploited. However, as soon as one considers the looser connections, they are there in

abundance. The exploitation of concentration of measure provides a good example of (iii)

(or (iv) - the classification is somewhat artificial). As for (vi) and (vii), I can speak from

personal experience, having worked recently on several problems outside Banach space

theory. Although I have not applied Banach-space results, my experience in that area has

enabled me to think about problems in ways that would not otherwise have occurred to

me. And I am far from alone in this, as many mathematicians who have worked on Banach

spaces have worked successfully in other areas as well, such as harmonic analysis, partial

differential equations, C∗-algebras, probability and combinatorics.
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The only way of dismissing these connections, it seems to me, is if one believes that

they are all connections between one uninteresting, unimportant area and another. This

is such a radical view, and dismisses so much of modern mathematics, including many

results with direct practical applications, that it is hard to believe that anybody would

take it seriously. Yet it seems that some do, which brings me back to the idea that

there are two cultures within pure mathematics. It is probably true that there are more

connections within the problem-solving and theory-building parts of mathematics than

there are between them, which is why the “two cultures” tag is appropriate. (I should say

once again that these labels are useful oversimplifications, and that I fully recognise that

many people are attracted to what I have called theory-building subjects because they

would ultimately like to contribute to the solution of certain problems.)

If it is true that pure mathematics can be divided into two broad cultures with not

a great deal of communication between them, one can still ask whether this matters. In

my opinion it does. One reason is that this situation has many undesirable practical

consequences. For example, mathematicians from one culture may well find themselves

making decisions that affect the careers of mathematicians from the other. If there is

little mutual understanding between the two cultures, then making such decisions fairly,

which is difficult under the best of circumstances, becomes even harder. (I myself have

absolutely no complaint, but I have had a very lucky career.) A second effect is that

potential research students who are naturally suited to one culture can find themselves

under pressure to work in an area from the other, and end up wasting their talent. This

is a particular danger in a department which becomes over-dominated by a small number

of subjects.

These effects are perhaps inevitable by-products of academic life, and are not my

main reason for urging better communication across the great divide. The most important

disadvantage of the current lack of communication is that it represents a great missed

opportunity. I have occasionally heard mathematicians on the theory side complain of a

problem that it has been attacked with all the known tools, but that a stubborn core re-

mains which is “essentially combinatorics”. This is a way of saying that the problem is very

difficult, but, more to the point, difficult in exactly the way that attracts mathematicians

of a problem-solving mentality. Unfortunately, it is also difficult to reach a level of under-

standing where one can appreciate the essentially combinatorial nature of the underlying
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problem. Such a situation is tailor-made for cross-cultural collaboration, but collaboration

of this kind would require greater efforts on the part of problem-solvers to learn a bit of

theory, and greater sympathy on the part of theoreticians towards mathematicians who

do not know what cohomology is. Such efforts cannot fail to enrich both mathematical

cultures.
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