formalization of mathematics

Freek Wiedijk Radboud University Nijmegen

Nederlands Mathematisch Congres

Leiden University

2007 04 12, 11:45

what is formalization?

principia mathematica

- Gottlob Frege, 1879
 Begriffsschrift
 formal logic in theory
- Alfred North Whitehead & Bertrand Russell, 1910–1913
 Principia Mathematica

formal logic in practice

development of mathematics in a formal system

automath

• N.G. de Bruijn, 1968

Automath

computer makes formalization feasible

- 1971–1976
 large ZWO (→ NWO) project
- Bert van Benthem Jutting, 1977
 Checking Landau's 'Grundlagen' in the Automath System

158 pages of German mathematics →491 pages of Automath source codechecking time: couple of hours (today: under half a second)

what formalization isn't: proofs with heavy computer support

Kenneth Appel & Wolfgang Haken, 1977
 four color theorem

a good mathematical proof is like a poem – this is a telephone directory!

Andrew Odlyzko & Herman te Riele, 1985
 Mertens' conjecture

first 2000 zeroes of the Riemann zeta function to 100 decimals

Tom Hales, 2003
 Kepler conjecture

computer only used as a calculator

what formalization isn't: computer algebra

 $> int(exp(-(x-t)^2)/sqrt(x), x=0..infinity);$

$$\frac{1}{2} \frac{e^{-t^2 \left(-\frac{3(t^2)^{\frac{1}{4}}\pi^{\frac{1}{2}}2^{\frac{1}{2}}e^{\frac{t^2}{2}}K_{\frac{3}{4}}(\frac{t^2}{2})}{t^2} + (t^2)^{\frac{1}{4}}\pi^{\frac{1}{2}}2^{\frac{1}{2}}e^{\frac{t^2}{2}}K_{\frac{7}{4}}(\frac{t^2}{2})\right)}{\pi^{\frac{1}{2}}}$$

> subs(t=1,%);

$$\frac{1}{2} \frac{e^{-1} \left(-3 \pi^{\frac{1}{2}} 2^{\frac{1}{2}} e^{\frac{1}{2}} K_{\frac{3}{4}} \left(\frac{1}{2}\right) + \pi^{\frac{1}{2}} 2^{\frac{1}{2}} e^{\frac{1}{2}} K_{\frac{7}{4}} \left(\frac{1}{2}\right)\right)}{\pi^{\frac{1}{2}}}$$

> evalf(%);

> evalf(int(exp(-(x-1)^2)/sqrt(x), x=0..infinity)); 1.973732150

clearly no proofs are involved here

what formalization isn't: automated theorem proving

is every Robbins algebra a Boolean algebra?

$$a \lor b = b \lor a$$
$$a \lor (b \lor c) = (a \lor b) \lor c$$
$$\neg(\neg(a \lor b) \lor \neg(a \lor \neg b)) = a$$

EQP (by Bill McCune, Argonne National Laboratory), 1996: 'yes', with a 34 line proof

in practice automated theorem proving is almost useless just mindless search computers only beat humans at 'puzzles'

don't expect computers to produce interesting proofs on their own

and now, an example: a proof by contradiction (Mizar)

```
Een bolleboos riep laatst met zwier
gewapend met een vel A-vijf:
                                           theorem
Er is geen allergrootst getal,
                                             not ex n st for m holds n \ge m
dat is wat ik bewijzen ga.
                                           proof
Stel, dat ik u nu zou bedriegen
en hier een potje stond te jokken,
                                             assume not thesis;
dan ik zou zonder overdrijven
                                             then consider n such that
het grootste kunnen op gaan noemen.
                                          A1: for m holds n \ge m;
Maar ben ik klaar, roept u gemeen:
'Vermeerder dat getal met twee!'
                                             set n' = n + 2;
En zien we zeker en gewis
dat dit toch niet het grootste was.
                                             n' > n by XREAL_1:31;
En gaan we zo nog door een poos,
dan merkt u: dit is onbegrensd.
                                             then not for m holds n >= m;
En daarmee heb ik g.e.d.
Ik ben hier diep gelukkig door.
                                             hence contradiction by A1;
'Zo gaan', zei hij voor hij bezwijmde,
'bewijzen uit het ongedichte'.
                                           end;
```

and a more serious example: a demo session in Spain

Problem [B2 from IMO 1972]

f and g are real-valued functions defined on the real line. For all x and y,

$$f(x+y) + f(x-y) = 2f(x)g(y).$$

f is not identically zero and $|f(x)| \leq 1$ for all x. Prove that $|g(x)| \leq 1$ for all x.

formal proof sketch (Isabelle)

```
theorem IMO:
  assumes "ALL (x::real) y. f(x + y) + f(x - y) = (2::real) * f x * g y"
  and "^{\sim} (ALL x. f(x) = 0)" and "ALL x. abs(f x) <= 1"
  shows "ALL v. abs(g v) \le 1"
proof (clarify, rule leI, clarify)
  obtain k where "isLub UNIV {z. EX x. abs(f x) = z} k" sorry
  fix y assume "abs(g y) > 1"
  have "ALL x. abs(f x) \le k / abs(g y)"
 proof
    fix x
    have "2 * abs(g y) * abs(f x) = abs(f(x + y) + f(x - y))" sorry
   have "... \leq abs(f(x + y)) + abs(f(x - y))" sorry
   have "... <= 2 * k" sorry
    show "abs(f x) \leq k / abs(g y)" sorry
  qed
  hence "isUb UNIV {z. EX x. abs(f x) = z} (k / abs(g y))" sorry
  have "k / abs(g y) < k" sorry
  show False sorry
qed
```

fragment of the full formalization

```
proof (clarify, rule leI, clarify)
  obtain k where "isLub UNIV {z. EX x. abs(f x) = z} k"
    by (subgoal_tac "EX k. ?P k", force, insert prems,
        auto intro!: reals_complete isUbI setleI)
  hence a: "ALL x. abs(f x) <= k" by (intro allI, rule isLubD2, auto)
  fix y assume "abs(g y) > 1"
  have "ALL x. abs(f x) \le k / abs(g y)"
  proof
    fix x
    have "2 * abs(g y) * abs(f x) = abs(f(x + y) + f(x - y))"
      by (insert prems, auto simp add: abs_mult)
    also have "... \leq abs(f(x + y)) + abs(f(x - y))"
      by (rule abs_triangle_ineq)
    also from a have "... <= k + k" by (intro add_mono, auto)
    also have "... \leq 2 * k" by auto
    finally show "abs(f x) \leq k / abs(g y)"
      by (subst pos_le_divide_eq, insert prems,
          auto simp add: pos_le_divide_eq mult_commute)
    etcetera
```

is formalization useful?

what does it buy me as a mathematician?

- nothing
 (you will tell the proofs to the computer, not the other way around)
- actually, it does buy you something:
 - your mathematics will be utterly correct
 - your mathematics will be utterly explicit

correctness

- humans are fallible
- computer programs always have bugs

how can we possibly promise utter correctness?

de Bruijn criterion

have a very small (part of the) program guarantee the correctness

```
HOL Light kernel: 542 lines = 17 pages+ proof of correctness of HOL Light kernel has been formalized
```

(but: what if **definitions** are incorrect?)

how difficult is it?

de Bruijn factor

$$\frac{\text{size of formalization}}{\text{size of LATEX source of informal mathematics}} \approx 4$$

de Bruijn factor in time

time to formalize time to understand the mathematics

is much larger

time to formalize one page from a textbook \approx about one week

the state of the art: things that have been formalized

list of 100 nice theorems

- 1. The Irrationality of the Square Root of 2
- 2. Fundamental Theorem of Algebra
- 3. The Denumerability of the Rational Numbers
- 4. Pythagorean Theorem
- 5. Prime Number Theorem
- 6. Gödel's Incompleteness Theorem
- 7. Law of Quadratic Reciprocity
- 8. The Impossibility of Trisecting the Angle and Doubling the Cube
- 9. The Area of a Circle
- 10. Euler's Generalization of Fermat's Little Theorem

. . .

not formalized yet:

- 12. The Independence of the Parallel Postulate
- 13. Polyhedron Formula

. . .

formalized:77HOL Light63Coq38ProofPower37Mizar35Isabelle33

```
google 100 theorems \mapsto \langle \text{http://www.cs.ru.nl/~freek/100/} \rangle
```

serious theorems that have been formalized

• first incompleteness theorem

nqthm, Natarajan Shankar Coq, Russell O'Connor HOL Light, John Harrison

fundamental theorem of algebra

Mizar, Robert Milewski HOL Light, John Harrison Coq, Herman Geuvers & others

Jordan curve theorem

HOL Light, Tom Hales Mizar, Artur Korniłowicz & others

• prime number theorem

Isabelle, Jeremy Avigad

four color theorem

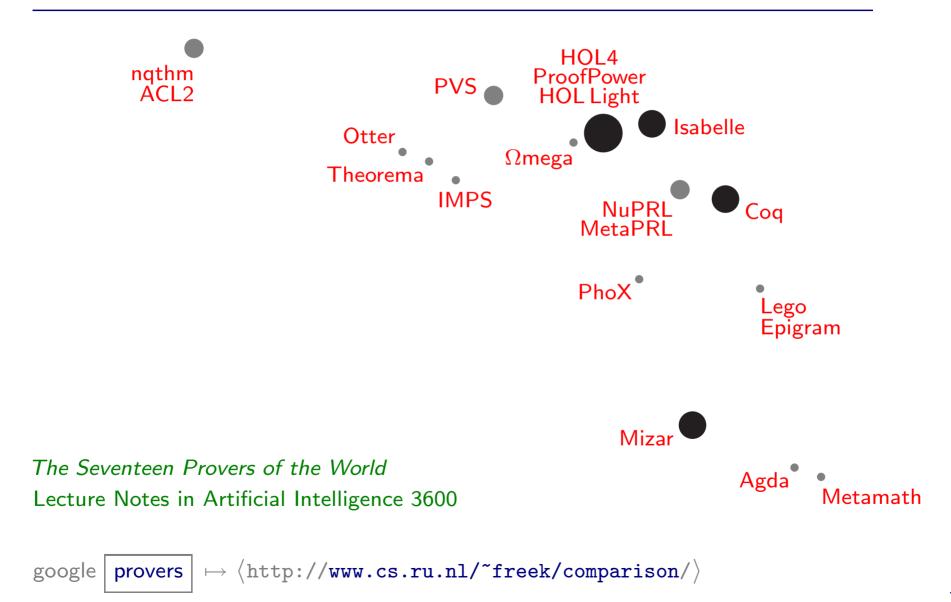
Coq, Georges Gonthier

0.03% of the four color theorem formalization

```
Lemma unavoidability : reducibility -> forall g, ~ minimal_counter_example g.
Proof.
move=> Hred g Hg; case: (posz_dscore Hg) => x Hx.
step Hgx: valid_hub x by split.
step := (Hg : pentagonal g) x; rewrite 7!leq_eqVlt leqNgt.
rewrite exclude5 ?exclude6 ?exclude7 ?exclude8 ?exclude9 ?exclude10 ?exclude11 //.
case/idP; apply: (@dscore_cap1 g 5) => x n Hn Hx Hgx// y.
pose x := inv_face2 y; pose n := arity x.
step ->: y = face (face x) by rewrite /x /inv_face2 !Enode.
rewrite (dbound1_eq (DruleFork (DruleForkValues n))) // legz_nat.
case Hn: (negb (Pr58 n)); first by rewrite source_drules_range //.
step Hrp := no_fit_the_redpart Hred Hg.
apply: (check_dbound1P (Hrp the_quiz_tree) _ (exact_fitp_pcons_ Hg x)) => //.
rewrite -/n; move: n Hn; do 9 case=> //.
Qed.
```

the state of the art: the four best systems

proof assistants for mathematics



first system: HOL Light

John Harrison, University of Cambridge → Intel Corporation

advantages very elegant system strong automation

disadvantages not really well suited for abstract algebra

unreadable proof scripts

```
let LEMMA1 = prove  (`(!x y. f(x + y) + f(x - y) = \&2 * f(x) * g(y)) / (!x. abs(f x) <= \&1) \\ ==> !l x. abs(f x * (g y) pow l) <= &1`, \\ DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN INDUCT_TAC THEN \\ ASM_SIMP_TAC[real_pow; REAL_MUL_RID] THEN GEN_TAC THEN MATCH_MP_TAC \\ (REAL_ARITH 'abs((&2 * a * b) * c) <= &2 ==> abs(a * b * c) <= &1`) THEN \\ ASM_SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o SPEC 'x + y') THEN \\ FIRST_ASSUM(MP_TAC o SPEC 'x - y') THEN REAL_ARITH_TAC);;
```

second system: Mizar

Andrzej Trybulec, Białystok, Poland

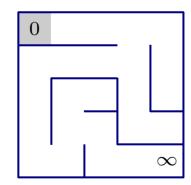
advantages readable proof scripts

closest to actual mathematics

disadvantages no first class binders (limits, sums, integrals)

no user automation

procedural
 HOL Light, Coq, Isabelle
 E E S E N E S S S W W W S E E E



declarative

Mizar, Isabelle

(0,0) (1,0) (2,0) (3,0) (3,1) (2,1) (1,1) (0,1) (0,2) (0,3) (0,4) (1,4) (1,3) (2,3) (2,4) (3,4) (4,4)

third system: Isabelle

Larry Paulson, University of Cambridge Tobias Nipkow & Makarius Wenzel, Technical University Munich

advantages automation like HOL Light

readable like Mizar

disadvantage not really well suited for abstract algebra

- set theory ('ZFC')
- type theory → each object has a 'type'
 recursion/induction hardwired into the foundations
- higher order logic = weak set theory, also typed very simple and elegant not as expressive as set theory and type theory

fourth system: Coq

Gérard Huet & Thierry Coquand & many others, INRIA, Paris

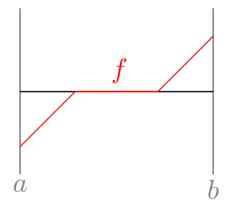
advantages automation like HOL Light and Isabelle

expressive like Mizar

disadvantages baroque foundations

designed for intuitionistic mathematics

intermediate value theorem is intuitionistically not valid



the state of the art: current projects

flyspeck

FlysPecK = Formal Proof of Kepler

Tom Hales' proof of Kepler's conjecture:

3 gigabytes of computer programs and data

referees did not understand it

- 'normal part' published in the *Annals of Mathematics*
- 'computer part' published in *Discrete and Computational Geometry*

2003: flyspeck project → convincing the world various prover communities involved: HOL Light, Coq, Isabelle

the microsoft/INRIA institute

the three theorems everyone always starts talking about:

- four color theorem
 Georges Gonthier, 2004
- Fermat's last theorem
 probably too big a hurdle yet . . .
- classification of finite simple groups

Georges Gonthier now has started work on the odd order theorem = Feit-Thompson theorem

It takes a professional group theorist about a year of hard work to understand the proof completely [...]

— Wikipedia

outlook

two common misunderstandings

• this will never be big: formalization is just too much work misunderstanding: underestimating technology

After formalizing the prime number theorem, I was struck with near certainty that, within a few decades, formally verified mathematics will become the norm.

[...] there are no major conceptual hurdles that need to be overcome; all it will take is clear thinking, sound engineering, and hard work.

— Jeremy Avigad

• 'I know mathematics, I can do this much better'

Paul Cohen, Harvey Friedman, Arnold Neumaier, etcetera

misunderstanding: image of the computer as a research assistant

the best computer game in the world

formalization is like

• programming

but no bugs, and not as trivial

• doing mathematics

but completely transparent, and the computer helps

if you don't like one of them, you won't like formalization if you like both, you will like formalization **very** much

Coq proofs are developed interactively [...] Building such scripts is surprisingly addictive, in a videogame kind of way [...]

— Xavier Leroy

the three revolutions in mathematics

• ancient greeks:

proof

• end nineteenth century:

rigor

• start twenty-first century:

complete detail

will formalization become commonplace?

'killer app' for formalization has not yet been found . . .

current technology already very attractive:

- mathematics that is utterly correct
- mathematics that is **utterly explicit**

things will really become interesting when:

time needed for formalization $< 3 \cdot$ time needed for referee checking