Continued Fractions and Linear Recurrences

H. W. Lenstra, Jr.*
Department of Mathematics
University of California, Berkeley
Berkeley, CA 94720
USA
hwl@math.berkeley.edu

J. O. Shallit!
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@graceland.uwaterloo.ca

August 6, 2001

1991 Mathematics Subject Classifications: 11A55, 11B37

Abstract

We prove that the numerators and denominators of the convergents to a real irra-
tional number # satisfy a linear recurrence with constant coefficients if and only if 4 is
a quadratic irrational. The proof uses the Hadamard Quotient Theorem of A. van der
Poorten.

Let 6 be an irrational real number with simple continued fraction expansion [ag, a;, as, . . .].
Define the numerators and denominators of the convergents to 6 as follows:

p-2=0; p =1 pn=dpppi1+paz forn>0; (1)
g—2=1; ¢1=0; ¢o=anGn-1+ gu_zo forn>0. (2)

By the classical theory of continued fractions (see, for example, [2, Chapter X]), we have
Pn

gn
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= lag, ay, ..., an].




In this note, we consider the question of when the sequences (p,)n>0 and (g, )n>0 can
satisfy a linear recurrence with constant coefficients. If, for example, § = /3, then § =
[1,1,2,1,2,1,2,...], and it is easy to verify that ¢,14 = 4¢u12 — ¢, for all n > 0. Our main
result shows that this exemplifies the situation in general.

Theorem 1 Let 6 be an irrational real number. Let its simple continued fraction expansion
be 0 = [ag, ay,...], and let (p,) and (qn) be the sequence of numerators and denominators of
the convergents to 0, as defined above. Then the following four conditions are equivalent:
(@) (pn)n>o satisfies a linear recurrence with constant complex coefficients;
(b) (gn)n>0 satisfies a linear recurrence with constant complex coefficients;
(c) (an)n>o s an ultimately periodic sequence;
(d) 6 is a quadratic irrational.

Our proof is simple, but uses a deep result of van der Poorten known as the Hadamard
Quotient Theorem. We do not know how to give a short proof of the implication (b) = (¢)
from first principles.

Proof. The equivalence (¢) < (d) is classical. We will prove the equivalence (b) & (c¢); the
equivalence (a) < (c) will follow in a similar fashion.

(¢) = (b): It is easy to see (cf. Frame [1]) that

Pn Pn—1 — dg ]- aq ]- . ap ]- (3)

Gn  Gn-1 1 0 1 0 1 0|
Now if the sequence (an),>o is ultimately periodic, then there exists an integer r > 0,
and r integers bg,by,...,b,_1, and an integer s > 1 and s positive integers cg,cy, ..., Cs_1

such that
f = [bo,bl,. . .,br_l,CO,Cl,. o9 Cs1,C0yCly ey Cs14.. ]

Now for each integer : modulo s, define

C,"l
M,»:H[f’ 0].

0<5<s

Then for all n > r, we have, by Eq. (3)

pn—l—s pn—l—s—l — Pn Pn-—1 Mn—r- (4)
Qn—l—s Qn—l—s—l dn dn—1

Since for all pairs (i,7) it is possible to find matrices A, B such that M; = AB and
M, = BA, and since Tr(AB) = Tr(BA), it readily follows that ¢+ = Tr(M;) does not depend
on i. Hence the characteristic polynomial of each M; is X* —tX 4 (—1)*. Since every matrix
satisfies its own characteristic polynomial, we see that M?_ — tM,_, + (—1)*I is the zero
matrix. Combining this observation with Eq. (4), we get

pn—|—25 pn—|—25—1 —¢ pn—l—s pn—l—s—l _I_ (_1)5 Pn Pn-—1 — 0
Qn—I—ZS Qn—|—25—1 Qn—l—s Qn—l—s—l dn dn—1



Therefore, gny2s —tGnys +(—1)°¢gn = 0 for all n > r, and hence the sequence (g, )n>0 satisfies
a linear recurrence with constant integral coefficients.

(b) = (c¢): The proof proceeds in two stages. First we show, by means of a theorem
of van der Poorten, that if (¢,),>o0 satisfies a linear recurrence, then so does (a,)n>0. Next
we show that the a,, are bounded because otherwise the ¢, would grow too rapidly. The
periodicity of (an),>o then follows immediately.

Let us recall a familiar definition: if the sequence of complex numbers (u,)n>o satisfies a
linear recurrence with constant complex coefficients

Up = § EiUn—

1<i<d

for all n sufficiently large, and d is chosen to be as small as possible, then X9 -3, ., €, X9
is said to be the minimal polynomial for the linear recurrence. Also recall that a sequence of
complex numbers (u,)n>o satisfies a linear recurrence with constant coefficients if and only
if the formal series 3,50 4, X" represents a rational function of X.

Define the two formal series F = ¥, 50(qng2 — ¢2)X™ and G = ¥, ¢op1 X" Clearly F
and G represent rational functions. We now use the following theorem of van der Poorten

[4, 5, 6]:

Theorem 2 (Hadamard Quotient Theorem) Let F = Yo fi X' and G = Y50 ¢: X!
be formal series representing rational functions in C(X). Suppose that the f; and g; are
complex numbers such that g; # 0 and f;/g; is an integer for all i > 0. Then Y,5o(fi/g:) X"
also represents a rational function. -

Since ¢uia = Api2qnit + qn for all n > 0, it follows from this theorem that },vq api 2 X"
represents a rational function, and hence the sequence of partial quotients (a;)nzo also
satisfies a linear recurrence with constant coefficients.

We now require the following lemma:

Lemma 3 Suppose that (Yn)n>o0 and (zn)n>0 are sequences of complex numbers, each satis-
fying a linear recurrence, with the property that the minimal polynomial of (zp)n>0 divides
the minimal polynomial of (yn)n>o. Let d denote the degree of the minimal polynomial of
(Yn)n>0. Then there exist constants ¢ > 0 and ng such that for all n > ng we have

maX(|yn—d+1|7 |yn—d+2|7 SR |yn|) > C|Zn|

Proof. PutY =3, ooy X" = f/g withged(f,g) =land degg =d,and Z = ¥, 50 2, X" =
h/g; here f,g,h € C[X]. Since ged(f,g) = 1, we can find a polynomial k = Ygc;cq ki X’
of degree < d such that kf = h (mod g). Then Z = kY + m, for a polynomial m, and
Zn = Yo<icd KiYn—i for n > ng = degm. It follows that

|2n] < (Z Ikzl) max(|yn-dat1]; [Yn-daszl, - - [ynl),

0<i<d
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and the lemma follows, with ¢ = (1 + Xg<;cq |[ki]) 7"

Since (ay)n>o satisfies a linear recurrence, we may express a, as a generalized power sum

n = Z Al(n)a?v

1<i<d

for all n sufficiently large. Here the «; are distinct non-zero complex numbers (the “charac-
teristic roots”) and the A;(n) are polynomials in n.

Now take y, = a, and z, = n‘a”, where a = a; and { = deg A; for some i. Then the
hypothesis of Lemma 3 holds, and we conclude that at least one of a,,_gy1, @n_gy2,...,an, is

greater than ent|a|”, for all n sufficiently large. Then, using Eq. (2), we have

in > TI a5 e -d (i) (alf s
1<j<dm

for some positive constant ¢’ and all m > 1. But (¢,)n>o satisfies a linear recurrence, and
therefore log gan = O(dm). It follows that |o;| < 1 for all 7, and further that deg A; = 0
for those ¢ with |a;| = 1. Hence the sequence (ay),>0 18 bounded. But a simple argument
using the pigeonhole principle (see, for example, [3, Part VIII, Problem 158]) shows that
any bounded integer sequence satisfying a linear recurrence is ultimately periodic. This
completes the proof.
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