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The Weil conjectures constitute one of the central landmarks of 20th century
algebraic geometry: not only was their proof a dramatic triumph, but they served
as a driving force behind a striking number of fundamental advances in the field.
The conjectures treat a very elementary problem: how to count the number of so-
lutions to systems of polynomial equations over finite fields. While one might
ultimately be more interested in solutions over, say, the field of rational numbers,
the problem is far more tractable over finite fields, and local-global princi-
ples such as the Birch-Swinnerton-Dyer conjecture establish strong, albeit
subtle, relationships between the two cases.

Moreover, there are some basic questions that have non-obvious connections to
the Weil conjectures. The most famous of these is the Ramanujan conjecture, which
treats the coefficients of ∆(q), one of the most fundamental examples of a modular
form. We obtain the function τ(n) from the formula for ∆(q) as follows:

∆(q) := q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn.

Ramanujan conjectured that |τ(p)| ≤ 2p11/2 for any prime number p. This is
closely related to a statement on the number of ways of writing p as a sum of 24
squares. Work of Eichler, Shimura, Kuga, Ihara, and Deligne showed that in fact
Ramanujan’s conjecture is a consequence of the Weil conjectures, so that Deligne’s
proof of the latter in 1974 also resolved the former.

We begin with a brief historical summary of developments prior to Weil, fol-
lowed by a more precise description of the statement of his conjectures, and finally
a sketch of the ideas behind their proof.

1. An auspicious prologue

We begin our story with the seminal work of Riemann on the classical zeta
function, which we recall is defined by the sum

(1) ζ(s) =
∑

n

1
ns

.

Euler had studied this function for real values of s, but Riemann, in his remarkable
8-page paper of 1859, went much further. He looked at complex values as well, and
therefore had at his disposal the considerable resources of complex analysis. In
particular, although the above sum for ζ(s) converges only for complex numbers s
that have real part #(s) strictly greater than 1, Riemann showed that the function
itself can be extended to an analytic function defined on the entire complex plane,
except at the point s = 1, at which it tends to infinity. He showed moreover that ζ(s)
satisfies a certain functional equation relating ζ(s) to ζ(1 − s), which introduced
an important kind of symmetry around the line #(s) = 1

2 . Most famously (or
1
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infamously), he conjectured what is now known as the Riemann hypothesis,
that aside from easily-analyzed “trivial zeroes” on the negative real axis, every zero
of ζ(s) occurs on the line #(s) = 1

2 . Riemann’s motivation for studying ζ(s) was to
analyze the distribution of prime numbers, but it fell to later authors (Hadamard,
de la Vallée-Poussin and Van Koch) to bring this vision to fruition. They
used the zeta function to prove the prime number theorem, which determined
the asymptotic distribution of prime numbers, and also showed that the Riemann
hypothesis is equivalent to a particularly strong upper bound for the error term in
the prime number theorem.

At first glance, the Riemann hypothesis might appear to be completely special,
a one-of-a-kind conjecture. However, it was not long before Dedekind generalized
the Riemann hypothesis to a whole family of zeta functions, and in doing so opened
the door to further generalization. Just as we can think of the complex numbers
as being obtained from the real numbers by including a square root of −1, that
is, a root of the polynomial x2 + 1, a number field, the fundamental object of
study in algebraic number theory, is obtained from the field Q of rational numbers
by including roots of more general polynomials. For each number field K we have
the ring of integers OK , which enjoys many of same properties as the classical
integers Z. Starting from this observation, Dedekind defined a more general class
of zeta functions which now bear his name, associating to each ring of integers OK

a zeta function in such a way that the classical ζ(s) is the zeta function for Z. In
contrast to the situation for Riemann’s zeta function, the functional equation for
Dedekind zeta functions remained open until 1917, when it was settled by Hecke,
who showed at the same time that Dedekind zeta functions could be extended to
the complex plane, thereby ensuring that the Riemann hypothesis makes sense for
them as well.

With such ideas in the air, it was not long before geometry entered the picture.
Emil Artin first introduced zeta functions and the Riemann hypothesis for cer-
tain curves over finite fields in his 1923 thesis, noting that the ring of polynomial
functions on such a curve shares precisely the properties of rings of integers which
Dedekind used to define his zeta functions. Artin quickly observed first that his
new zeta functions were strongly analogous to Dedekind zeta functions, and second
that they were frequently more tractable: evidence for both is provided by the fact
that he was able to check explicitly that the Riemann hypothesis was satisfied for
a number of specific curves. The difference between the two situations is encapsu-
lated as follows: while in the number field case one can think of the zeta function as
counting primes, in the case of a function field the zeta function may be expressed
in terms of the more geometric data of counting points on the given curve. In a
1931 paper F. K. Schmidt generalized Artin’s work, and exploited this geometry
to prove a strong form of the functional equation for such zeta functions. Shortly
thereafter, in a 1933 paper Hasse was able to prove the Riemann hypothesis in the
special case of elliptic curves over finite fields.

2. Zeta functions of curves

We now discuss in more detail the definition and properties of zeta functions
associated with curves over finite fields, as well as the theorems of Schmidt and
Hasse. Let Fq denote the finite field having q elements, where q = pr for some
prime number p and some positive integer r. The most classical case is when q = p,
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and Fp is simply the field of integers modulo p. More generally, we can obtain Fq

by adding roots of polynomials to Fp just as we do with number fields; in fact, a
single root of a single irreducible polynomial of degree r will do.

Artin studied a certain class of curves in plane. Here, “plane” means F2
q, that is,

the set of all pairs (x, y) with x and y in Fq. A curve C is simply the subset of these
points where some polynomial f(x, y) with coefficients in Fq vanishes. Of course, if
F is any field containing Fq, then the coefficients are also in F , so it makes sense to
talk about C(F ), the curve in the larger “plane” F 2 defined by the same equation
f(x, y) = 0. If F is also a finite field, then C(F ) is obviously also finite. The finite
fields F containing Fq turn out to be the fields Fqm for m ≥ 1. For each m ≥ 1 let
us define Nm(C) to be the number of points in the curve C(Fqm). The sequence
N1(C), N2(C), N3(C), . . . is what we will wish to study.

Given our plane curve C, we can define the ring of polynomial functions OC

of C. This is simply the ring of polynomial functions on the plane (i.e., in two
variables), modulo the equivalence relation that two functions taking the same
values on C should be considered the same. Formally, OC is simply the quotient
ring Fq[x, y]/(f(x, y)). Artin’s basic observation was that the definition of the
Dedekind zeta function could be applied equally well to the ring OC , yielding a
zeta function ZC(t) associated with C. However, in our geometric context we
have the following equivalent and more elementary formula, which explicitly relates
ZC(t) to the number of points over finite fields:

(2) ZC(t) = exp

( ∞∑

m=1

Nm(C)
tm

m

)
.

Schmidt generalized Artin’s definition to all curves over finite fields, and gave an
elegant description of the zeta function for curves, bearing out Artin’s observations
in the cases he was able to compute. The nicest form of Schmidt’s theorem involves
restricting to curves satisfying two additional conditions. The first condition is that
rather than considering the curve C in the plane, we will want to “compactify” it by
considering instead a projective curve; we can think of this as adding some “points
at infinity”, thus increasing Nm(C) slightly. Second, we will want to impose a
technical condition of smoothness on C, which is analogous to asking that C be a
manifold.

In order to state Schmidt’s result, recall that there is a notion of the genus g of a
smooth projective curve C, which can be defined to be the dimension of the space
of differentials on C, or if C is a complex curve, as the “number of holes” in
the space obtained from the analytic topology on C. By extending certain classical
results in algebraic geometry to more general fields, Schmidt proved that for a
smooth projective curve C over Fq of genus g, we have

(3) ZC(t) =
P (t)

(1− t)(1− qt)
,

where P (t) is a polynomial with integer coefficients, of degree 2g. Furthermore,
he proved a functional equation in terms of the substitution t %→ 1/qt. If we set
t = q−s, this gives a functional equation for the substitution s %→ 1 − s, as in
Riemann’s original work. The Riemann hypothesis for C is then the statement
that the roots of ZC(q−s) all have #(s) = 1

2 , or equivalently, the roots of P (t) all
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have norm equal to q−1/2. It is an elementary observation that this is equivalent
to the assertion that |Nm(C)− qm + 1| ≤ 2g

√
qm, for all m ≥ 1.

The next step in exploiting the geometric nature of zeta functions of curves
is the observation that if F is a finite field containing Fqm , then the points with
coordinates in Fqm are the fixed points of a function called the Frobenius map, which
is the map Φqm that sends a point (x, y) ∈ F 2 to the point (xqm

, yqm

). It is a simple
extension of Fermat’s little theorem that if t ∈ Fqm , then tq

m

= t. Moreover,
the converse holds: if F is a field containing Fqm , and t ∈ F satisfies tq

m

= t, then
t ∈ Fqm . This follows because in any field, and in particular in F , the polynomial
tq

m − t can have at most qm roots, which must then be precisely the elements of
Fqm . It immediately follows that a point (x, y) ∈ F 2 is a fixed point of Φqm if and
only if (x, y) ∈ F2

qm . Moreover, it is elementary that (s+t)qm

= sqm

+tq
m

, if s, t are
in any field containing Fp. Because the coefficients of f(x, y) are in Fqm , it follows
that if f(x, y) = 0, then

f(Φqm(x, y)) = f(xqm

, yqm

) = (f(x, y))qm

= 0,

so we see that Φqm gives a map from C to itself. Thus, one might hope to study
C(Fqm) by analyzing more generally what one can say about the fixed points of
maps from C to itself. Hasse successfully applied this point of view to prove the
Riemann hypothesis in the case g = 1, which is to say the case of elliptic curves.
Moreover, we will see that this perspective is woven throughout the fabric of the
rest of our story, not only inspiring Weil to make his conjectures, but also suggesting
the techniques that ultimately led to their proof.

3. Enter Weil

In 1940 and 1941, André Weil gave two proofs of the Riemann hypothesis for
curves over finite fields. Or, to be more accurate, he described two proofs: they
both relied on fundamental facts in algebraic geometry which had been proved
by analytic methods for varieties over the complex numbers, but which remained
beyond the reach of the existing foundations in the case of arbitrary base fields. It
was largely in order to address this deficiency that Weil wrote his Foundations of
Algebraic Geometry, which appeared in 1948 and allowed both of his earlier proofs
to be made rigorous.

Weil’s Foundations constituted a watershed in algebraic geometry, as it intro-
duced for the first time a notion of an abstract algebraic variety. Previously, a
variety was always a global object, in that it was defined by a single collection
of polynomial equations, in either affine or projective space. Weil realized that it
would be helpful to have a corresponding locally defined concept, so he introduced
abstract algebraic varieties, which are obtained by gluing together affine algebraic
varieties in much the same way as manifolds in topology are obtained by gluing
together open subsets of affine space. The notion of an abstract variety played a
fundamental role in formalizing Weil’s proofs, and was also an important precursor
to Grothendieck’s immensely successful theory of schemes (which are discussed in
arithmetic geometry section 3.3).

The following year, in a remarkable paper in the Bulletin of the AMS, Weil
went further, studying zeta functions ZV (t) associated with higher-dimensional
varieties V over finite fields, and taking as his definition the formula (2). While the
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situation is more complicated in this context, the behavior conjectured by Weil was
nonetheless strikingly similar, an utterly natural extension of the case of curves:

(i) ZV (t) is a rational function of t;
(ii) more explicitly, if n = dimV , we can write

ZV (t) =
P1(t)P3(t) · · ·P2n−1(t)
P0(t)P2(t) · · ·P2n(t)

,

where each root of each Pi(t) is a complex number of norm q−i/2;
(iii) the roots of Pi(t) are interchanged with the roots of P2n−i(t) under the

substitution t %→ 1/qnt;
(iv) if V is the reduction modulo p of a variety Ṽ defined over a subfield of C,

then bi := deg Pi(t) is the ith topological Betti number of Ṽ using the
usual topology.

The last part of (ii) is known as the Riemann hypothesis, while (iii) constitutes
a functional equation for the substitution t %→ 1/qnt. Note that if we return to
Schmidt’s theorem (3) in the case of curves, the degrees 1, 2g, 1 of 1− t, P (t), 1− qt
are also precisely the Betti numbers of a complex curve of genus g.

4. The proof

Weil’s conjectures were inspired by a very intuitive topological picture, derived
from considering V (Fqm) as the set of fixed points of Φqm . Forgetting for the
moment that Φqm only makes sense over finite fields, if we imagine that V were
defined over the complex numbers, then by using the complex topology we could
study the fixed points of Φqm by the Lefschetz fixed-point theorem, obtaining a
formula in terms of the action of Φqm on the cohomology groups. Indeed, we
could conclude almost immediately the factorization in (ii) (and in particular the
rationality asserted in (i)), with each factor Pi(t) corresponding to the action of
Frobenius on the ith cohomology group, and we would also have deg Pi(t) given by
the ith Betti number of V . Moreover, the functional equation would follow from
Poincaré duality.

It was not long before it became clear that such cohomological arguments might
become more than just motivation: there could be a cohomology theory for algebraic
varieties over finite fields which would mimic the properties of the classical topolog-
ical theory, and would allow one to prove the Weil conjectures. Such a cohomology
theory is now known as a Weil cohomology. Serre was the first to seriously attempt
to develop such a theory, but with only limited success. In 1960, Dwork provided a
brief detour by using p-adic analysis (see local-global principles) to prove the
rationality and functional equation. Shortly thereafter, building on comments of
Serre and in collaboration with M. Artin, Grothendieck proposed and developed a
candidate for a Weil cohomology, the étale cohomology. Indeed, he noted that one
could in fact extend the list of desired properties of a Weil cohomology in such a
way that the Weil conjectures would follow almost immediately. These properties
were known but extremely difficult in the classical case, and included the “hard
Lefschetz theorem.” In a burst of optimism, Grothendieck referred to them as the
“standard conjectures,” and envisioned that the Weil conjectures would ultimately
be proved through them.

However, the final chapter of the story did not go entirely according to Grothendieck’s
plan. His student Deligne set about working on the problem, and was ultimately
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able to complete an exceedingly subtle and intricate proof using induction on the
dimension of the variety. The étale cohomology played an absolutely fundamental
role in Deligne’s proof, but he also introduced other ideas into the picture, most
notably a classical geometric construction of Lefschetz, as well as some work of
Rankin on the Ramanujan conjecture. In the end, he was in fact able to conclude
the hard Lefschetz theorem from his work, but the rest of the standard conjectures
remain unsolved to this day.
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