Wiskundemeisjes

Ionica & Jeanine
 
Slik Internetbureau Rotterdam Internetbureau Rotterdam



  • Laatste Reacties

Categorieën

Archief

De aarde aan een spijker


In Puzzels, door Ionica

Een tijdje terug schreef ik een stukje over wat er gebeurt als je een touw strak om de aarde spant, er een meter touw bij doet en vervolgens het touw overal evenver optilt. Zie ook dit filmpje.

In de reacties op dat stukje stelde Koen als verdiepingsvraag: "En als je dat touwtje nou aan een kant aantrekt, zodat er een punt ontstaat en aan de andere kant van de aarde het touw weer strak om de aarde zit, hoe hoog wordt die punt dan?"

Lezers Robert Groenewold en Lon Boonen brachten een lange avond in de kroeg door om deze vraag op te lossen. Ze stuurden onderstaande oplossing in. Wij vertellen ze maar niet dat dit alles al lang op de site van KP Hart te vinden was...

Onlangs spanden de wiskundemeisjes een touw strak om de aarde om het vervolgens een meter langer te maken en aan te tonen dat zelfs een lineair verband (tussen straal en omtrek) contra-intuïtief kan zijn. Aangezien allle moeite reeds gedaan is om genoemd touw te spannen wilden wij, twee natuurkundejongens, dat touw een alternatieve bestemming geven.
Wanneer we een touw strak rond de aarde spannen, één meter touw toevoegen en het geheel aan een spijkertje ophangen, wat is dan de afstand tussen de aarde en het spijkertje? Past de Domtoren er onder?

De oplossing kostte ons een avond in (het helaas ter ziele gegane) Ledig Erf in Utrecht. En ettelijke bierviltjes. Deels was dit te wijten aan het feit dat we (schaam, schaam) de Taylor-reeks opnieuw moesten ontdekken.

Daar gaan we... We zien twee rechthoekige driehoeken die gevormd worden door het centrum van de aarde, het spijkertje en het punt waar het touw de aarde raakt. We bekijken één van die driehoeken.
De hoek onder de grond noemen we α. We veronderstellen dat α klein is en dat is ook zo. Van de middelbare school konden we ons nog SOS, CAS en TOA herinneren.
De lengten van deze zijden zijn als volgt:
S = Schuine zijde = R + h, waarbij R de straal van de aarde is en h de raadselachtige hoogte
A = Aanliggende rechthoekzijde = R
O = Overstaande rechthoekzijde = αR + ½
Laten we eerst de tangens te grazen nemen:
tan(α) = (αR + ½)/R = α + ½/R
Nu moesten we Taylor om hulp vragen. Gelukkig hebben we tegenwoordig Wolfram Alpha, twee termen leek ons ruim voldoende:
tan(α) = α + α3/3
Dat komt goed uit:
α = 3√1½R.
Dan nu de cosinus:
cos(α) = R/(R+h)
Ofwel:
h = R(1/cos(3√1½R) - 1)!

Vul je alles netjes in, dan kom je op een h van 121m. Ruim voldoende voor de Domtoren dus!
Ik heb 'm ook effe geïnverteerd: voor een h van 2m heb je een extra stukje touw van 2mm nodig! Dus als de wiskundemeisjes hun touw per ongeluk 2mm te lang hadden gemaakt (op de 40.000km), dan had je het touw tussen duim en wijsvinger op kunnen tillen en er onderdoor kunnen stappen als bij een hek met prikkeldraad.

Hoe we het al die jaren geleden precies hebben gedaan hebben we niet kunnen achterhalen... Een derdemachtswortel trekken en een cosinus berekenen zijn zover ik weet niet triviaal op een bierviltje. Hoewel ik ook weer hoor dat je dat allemaal met wat origami prima voor elkaar krijgt.

(Robert Groenewold en Lon Boonen)

8 reacties op “De aarde aan een spijker”

  1. Jan Paul:

    IK WORD GEK!

  2. Marcel Pot:

    Volgens mij missen jullie een deelstreep in de oplossing van \(\)

  3. michiel:

    Hmmmmm, wat?

  4. Lon:

    @Marcel: klopt! alpha was de derdemachtsworteluitdriegedeelddoor2R. Ik dacht: weet je wat, daar maak ik anderhalfR van, dat bekt wat beter, maar dat is inderdaad helemaal niet goed.

    Nou ja, gelukkig blijft de Domtoren passen want we hadden wel gerekend met de juiste formule.

    In de woorden van DNA: we apologize for the inconvenience.

  5. Simeon:

    Heeft dit niet ook ooit in de Pythagoras gestaan?

  6. Eric:

    Waar zit de fout in de volgende redenering:
    Als je het met 1 meter verlengde touw overal evenver optilt, is de extra hoogte ~16 cm (100cm/(2*Ï€)).
    Als je het met 1 meter verlengde touw op 1 plek optilt, is de extra hoogte 50 cm (100cm/2).
    Als je het touw dus op jullie manier optilt, ligt de extra hoogte tussen beide uitersten, dus tussen 16 cm en 50 cm.
    Dus past de Domtoren er nooit onder, en wordt het zelfs lastig om er onderdoor te bukken!

  7. Jipi:

    De fout is dat het touw nog meer omhoog kan als je het touw niet de hele cirkel laat rondgaan en dan omhoog trekt.

  8. ugg boots:

    dan had je het touw tussen duim en wijsvinger op kunnen tillen ugg boots en er onderdoor kunnen stappen als bij een hek met prikkeldraad.Als je het touw dus op jullie manier optilt, ligt de extra hoogte tussen beide uitersten, dus tussen ugg boot.

Plaats een reactie


Je kunt LaTeX gebruiken in je reactie.
Gelieve antwoorden op puzzels tussen [SPOILER] en [/SPOILER] te plaatsen.