Wiskundemeisjes

Ionica & Jeanine
 
Slik Internetbureau Rotterdam Internetbureau Rotterdam



  • Laatste Reacties

Categorieën

Archief

De kaarten van Wason


In Column, door Jeanine

Deze column verschijnt vandaag in de Volkskrant.

Op de lerarenopleiding moest ik een puzzel uit de experimentele psychologie oplossen. Stel, er liggen vier kaartjes op tafel. Elk kaartje heeft aan de ene kant een letter en aan de andere kant een cijfer. Op de kanten die je kunt zien, staan een A, een B, een 4 en een 7. Vervolgens beweert iemand: “Voor deze vier kaartjes geldt: als er aan de ene kant een klinker staat, staat aan de andere kant een even getal”. Welke kaartjes moet je minstens omdraaien om zeker te weten of de bewering klopt?

wason-card

Denk eerst even goed na voor u verder leest!

Deze vraag werd in 1966 bedacht door cognitief psycholoog Peter Wason en hij ontdekte dat nog geen tien procent van de mensen het antwoord goed had. In mijn groep docenten in opleiding hadden gelukkig wel wat meer mensen het goed, en de wiskundigen wisten het allemaal meteen. Niet zo gek ook, want die zijn gewend aan ingewikkelde als-dan-redeneringen.

En wat is het goede antwoord? Je moet natuurlijk het kaartje met de A omdraaien (want je moet controleren of aan de andere kant inderdaad een even getal staat). Dat doet iedereen wel goed. Er is nog een kaartje dat je moet omdraaien: de 7. De enige manier waarop de bewering ontkracht kan worden, is namelijk een kaartje vinden met een klinker en een oneven getal. Je moet de 7 dus omdraaien om te zien of er niet per ongeluk een klinker aan de andere kant staat. De 4 en de B kun je rustig laten liggen, want er is niet gezegd dat een even getal altijd een klinker op de andere kant moet hebben, en voor medeklinkers is überhaupt geen eis gesteld.

Later ontdekte men dat veel meer mensen het antwoord goed hebben wanneer de vraag in een sociale context gepresenteerd wordt. Als aan de ene kant leeftijden en aan de andere kant dranken staan, en de bewering is “als iemand jonger dan 16 is, drinkt hij/zij geen alcohol”, en je vervolgens de kaartjes cola, bier, 12 en 19 laat zien, schijnt het veel makkelijker te zien te zijn welke kaartjes je moet omdraaien. Het kaartje met bier (je moet controleren of daar geen leeftijd jonger dan 16 bij hoort) en het kaartje met 12 (drinkt die persoon van 12 niet stiekem een breezer?). Wat de leeftijd is van de persoon die cola drinkt en of de persoon van 19 alcohol nuttigt, zijn totaal niet relevant, vergelijkbaar met de 4 en de B in het oorspronkelijke probleem.

Deze situaties zijn natuurlijk niet helemaal hetzelfde: de eerste regel is willekeurig, opgesteld door de onderzoekers, terwijl de tweede regel een wet is die we allemaal kennen, waar al een sterke normatieve associatie bijhoort. Maar wat betreft de logica komt de situatie overeen.

Veel mensen hebben in de eerste puzzel de neiging om het kaartje met de 4 ook om te draaien. Maar je controleert dan in feite of de wet wordt nageleefd door te kijken wat de leeftijd is van iemand die cola drinkt.